

Security Requirements

Modeling Tool

Socio-Technical Security

Modeling Language
(rev 1.0)

For STS-Tool Version 2.0 & 2.1

Contact: ststool@disi.unitn.it

mailto:ststool@disi.unitn.it

The socio-technical security

modeling language

Table of contents

I

Table of contents

1 INTRODUCTION ... 1

1.1 OVERVIEW.. 1

1.2 RUNNING EXAMPLE .. 3

2 MODELING SECURITY NEEDS WITH STS-ML: THE OPERATIONAL VIEW .. 4

2.1 SOCIAL VIEW ... 4

2.1.1 Capturing normative requirements through organizational constraints .. 11

2.1.2 Threats represented in STS-ml .. 12

2.2 INFORMATION VIEW ... 13

2.3 AUTHORIZATION VIEW .. 15

3 DERIVING SECURITY REQUIREMENTS ...18

4 THE STS METHOD FOR SECURITY REQUIREMENTS ENGINEERING ..24

5 SUMMARY AND DISCUSSION ...31

6 REFERENCES ...34

APPENDIX: AUTOMATED ANALYSES SUPPORTED BY STS-TOOL ...35

A. WELL-FORMEDNESS ANALYSIS ... 35

B. SECURITY ANALYSIS ... 35

C. THREAT ANALYSIS: THREAT PROPAGATION ... 38

The socio-technical security

modeling language

Introduction

1

1 Introduction

Socio-technical systems are an interplay of social (human and organizations) and technical subsystems, which interact

with one another to reach their objectives, making a system a network of social relationships. Today’s software systems

are a complex interplay of different subsystems, which are not only technical, but also social. In principle, they are

socio-technical systems. Each subsystem is a participant of the socio-technical system. Participants in a socio-technical

system are autonomous, and the system is defined in terms of the interactions among participants, which may be: social

reliance, i.e., participants rely on others to achieve their goals, and information exchange, i.e., participants exchange

relevant information. In such systems, many security issues arise from the interaction among participants, and on how

the exchanged information is manipulated. Social aspects are thus a main concern when analyzing the security of socio-

technical systems.

Goal-oriented approaches to security requirements engineering [3][4][12][13] offer a suitable abstraction level for the

design of secure socio-technical systems. They model socio-technical systems as a set of actors that are intentional –

they have objectives, and social – they interact with others to achieve their objectives. Unfortunately, their underlying

ontology is too abstract to effectively represent real-world information security requirements, which include fine-

grained and contradictory authorizations over information entities [13][14].

To overcome this limitation, we have proposed the Socio-Technical Security modeling language (STS-ml) for socio-

technical systems 6[2]. STS-ml relies on a more expressive ontology and expresses security requirements as

relationships between couples of socio-technical systems participants (also referred to as actors), where a requester

actor requires a requestee actor to comply with a security need. STS-ml enables each participant to express its own

requirements.

The Socio-Technical Security modeling language (STS-ml) is an actor– and goal–oriented security requirements

modeling language. It captures system security needs and requirements at the organizational (business/operational)

level. The language enables to represent and reason about organizational assets, social dependencies, and trust

properties that are essential to capture and understand stakeholders’ security needs.

To support the elicitation process, the language captures the operational relationships between actors. It allows for

expressing the system security needs of the stakeholders. These needs are then transformed into the security

requirements (with the aid of security risk assessment techniques) that will in turn drive the design and assembly of

service compositions to support the goals of the involved actors.

A basic component of the language consists of the constructs for expressing interactions between actors. To

successfully cope with the security threats and changes that unexpectedly may arise at runtime, adaptation may take

place taking advantage of the alternatives captured by STS-ml.

STS-ml consists of a set of concepts that can be employed to conduct security requirements analysis for a wide range of

applications. The language supports the representation of security needs that are later transformed into security

requirements for the system to-be. We provide the intuition behind these concepts, their semantics, and their graphical

representation. In the following subsections we present such concepts and the models that can be created by using the

language. We present a method that facilitates modeling systems and capturing stakeholders security needs. We

describe the analysis process, whose aim is to improve the overall model of the organization with respect to security

concerns.

1.1 Overview

STS-ml offers the possibility to represent the interaction between different actors that are interacting to achieve their

own objectives. We use the concept of social commitment (briefly, commitment) to model the interactions between

participants in a socio-technical system. A commitment [6][7] is a quaternary relation C(debtor, creditor, antecedent,

consequent) that stands for a promise made by the debtor to the creditor that, if the antecedent is brought about, the

The socio-technical security

modeling language

Introduction

2

consequent will be brought about. For instance, the commitment C (hotel, customer, prepayment done, room booked)

represents a commitment from hotel to the prospective customer that if a prepayment is done to book the room, then the

reservation will be made (room will be booked). Some commitments are unconditional (i.e., their antecedent is true).

Commitments have contractual validity within a socio-legal context: the debtor might incur in penalties if he does not

keep his promises.

We use commitments as a mechanism of control, to check consistency between the promises participants (represented

via actors) make and what they actually bring about. This mechanism helps to obtain a more robust system, by ensuring

things work in compliance with organizational rules and regulations, and software restrictions (access control is usually

specified in the software). Specifically, we use commitments to verify whether security requirements are met.

The STS method, guiding the modeling and analysis of STS-ml models (models constructed with STS-ml concepts and

relationships), offers security requirements engineers the opportunity to model different perspectives of a considered

setting separately. This solution has two advantages: first, it facilitates the work of engineers when dealing with non-

trivial settings; second, it presents orthogonal perspectives separately, applying the separation-of-concerns principle.

These different perspectives are views over the same model, and together form the complete model that one or more

engineers construct. In order to guarantee consistency among the views, the supporting toolset is provided with

automated reasoning mechanisms that detect inconsistencies and provides the requirements engineer with enough detail

to fixing the identified problems. The STS method supports the specification of secure socio-technical systems by

modeling the following views:

1. Social view: represents actor intentionality and sociality. Actors are intentional entities that aim to attain some

state of affair, by manipulating the information to their disposal. Actors can be either social or technical in

nature; for example, a web service that acts on behalf of a travel agency is technical, whereas a customer

interacting with such web service is social. An important characteristic of actors is, however, their sociality,

i.e., their need to interact with others to achieve their desired state of affairs.

2. Information view: represents the information in the considered organization/setting together with the

documents that represent such information, as well as the relationships among these informational entities or

documents respectively.

3. Authorization view: represents the authorizations granted by some actors to other actors concerning the

exchange and manipulation of information for particular purposes.

4. Security Requirements: represents the list of security requirements expressed in terms of commitments that

hold/should hold between actors to address the security needs expressed through the above three views. Figure

1 outlines STS-ml and its modus operandi. A central role in the schema is played by security needs, which are

communicated by the stakeholders in the organization and modeled by the security requirements engineer of

the said socio-technical system. Such security needs are expressed in the operational view that describes how

the organization (system) operates. The operational view consists of the three views that we listed above:

social, information, and authorization. Together, these views provide a comprehensive picture of the

organization’s key business/operational concerns as well as security aspects, eliciting security needs and

discovering potential threats to security.

The socio-technical security modeling language goes beyond elicitation: it automatically derives security requirements

as a set of commitments between actors. Such commitments shall be established—via security mechanisms—and

continuously monitored for compliance. The derived security requirements, if satisfied, ensure security in the

organization.

The modeling and analysis of STS-ml models is guided step by step by the STS method. STS-Tool [8], on the other

hand, is the modeling and analysis support tool for STS-ml. As such it supports the modeling activities and the

derivation of security requirements as proposed in STS-ml. At the end of the modeling process, the STS-Tool allows

security requirements engineers to export models into various formats such as jpeg, gif, svg, and png to name a few, and

to automatically generate a security requirements document (see Figure 1). This document provides a description of

each STS-ml view and the corresponding elements, which is helpful while communicating with stakeholders. However,

the document is customizable: designers can choose among a number of model features to include in each section. More

details on how to use the modeling and reasoning capabilities of STS-Tool are provided in [10].

The socio-technical security

modeling language

Introduction

3

Figure 1: Multi-view modelling

In Section 2 we introduce and explain one by one the STS-ml concepts and relationships. We do so by going through

the different views supported by the STS method, describing their purpose along with the introduction of the concepts

that are used in each view. In Section 3 we describe the derivation of security requirements in STS-ml, enumerating the

comprehensive list of security requirements supported by the language. Section 4 introduces and explains the STS

method for security requirements engineering that supports the modeling and analysis of socio-technical systems using

STS-ml. The method guides these activities step by step, and is illustrated with the help of the running example

introduced in Section 1.2. Finally, Section 5 summarizes STS-ml constructs in the form of a cheat-sheet to support any

potential user of STS-Tool.

1.2 Running example

We illustrate STS-ml using a running example concerning compliance with the data protection legislation [3]. The case

study concentrates on the compliance of Italian public administration, such as universities, to Italian security and

privacy legislation [4]. This law/act specifies requirements over the public administrations to devise internal regulations

and policies based on the ISO-17799 standard. The focus is on personal data and data processing such as data usage,

update, modification and production. The University of Trento (UniTN) has enforced the Data Protection Act since

January 14th, 2002. UniTN offers several international programs that attract a large number of international students.

We consider a scenario in which an international student needs a document from the program coordinator; such

document has to be presented to the local immigration office to get his stay permit extended. The following roles are

involved:

 Student: needs an official document to prove he is enrolled in the study program and his incomes are enough to

afford the stay. He asks the program coordinator to issue the document. For this reason, he has to transmit his

personal data, as well as financial information. His personal data is stored in the UniTN information system.

 Program Coordinator: issues the official document for the student. He might transfer responsibility for parts of

this activity to his secretary.

 Secretary: retrieves student information (personal data and financial data) from the information system and

drafts the document.

 IS Manager: manages the information about students stored in the UniTN information system in accordance

with confidentiality restrictions.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

4

2 Modeling security needs with STS-ml: the operational
view

We detail the three sub-views that constitute the operational view of STS-ml. Together, these views enable modeling

the security needs expressed by stakeholders along with their business policies – how they intend to achieve their

objectives.

2.1 Social view

The social view—whose meta-model is shown in Figure 2—represents the perspectives of different intentional actors in

the considered setting together with the interactions that take place among them.

Figure 2: Multi-view modelling

We consider an abstract concept of actor
1
, and refine it into two distinct concrete concepts: role and agent, used in

order to represent socio-technical system participants. Agents refer to concrete known participants of the system, while

roles are an abstract characterization of the behavior of an active entity in the system. Roles are an important concept in

the modeling of a socio-technical system, because designers are often unaware of the actual participants at runtime.

Specifying systems at the role level is a flexible approach that defines the requirements for an agent to play a role, as

opposed to mandating the existence of a specific agent. At runtime the actual participants will adopt those roles. We

capture this through the concept of agent, which is said to play a role, as shown by the meta-model in Figure 2. To

exemplify the usage of roles and agents we represent a situation in which Anna is a secretary, by modeling Secretary as

a role, and Anna as an agent playing that role (Figure 3). The reason behind such representation is that Anna is a known

participant, while secretary could be played by different agents at runtime; therefore it is represented as a role.

Figure 3: An agent playing a role

1 Note that actor is not a concept in STS-ml; rather it is used whenever we do not need to distinguish between the concepts of role and agent on

properties and/or relationships that apply to both these concepts.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

5

Some agents might be already known at requirements-time. For instance, the Prefecture of Trento is modeled as an

agent, because there is only one prefecture and it is known that students should invariably interact with it to renew their

stay permit.

Actors are intentional entities: they have strategic interests/objectives they want to pursue. These objectives are

captured in STS-ml through the concept of goal. The goals actors want to achieve can be elicited by conducting

organizational analysis and performing interviews with stakeholders. The goals that are assigned to roles represent

expectations on the behavior of agents playing that role. However, due to their autonomy, some agents might behave

differently at runtime (however, some others might be expressly designed to be compliant with the expectations

expressed by the stakeholders).

The goals actors want to achieve are represented within the scope of the actor (graphically represented by a circle

attached to an actor, see Figure 4). An actor may have one or more goals that it wants to achieve.

Figure 4: Actor scope

STS-ml offers the possibility to build models of the system that can be refined and extended incrementally. For this

purpose, we analyze goals from the actor perspective and refine them, creating a goal model. Goals are analyzed and

refined in STS-ml via AND/OR decompositions. The AND/OR decomposition relationship is used to refine goals into

sub-goals, and combine them depending on the way the initial (top-level goal) can be achieved/fulfilled by answering

how questions. As a result we obtain a goal model, which is an AND/OR tree whose nodes are goals (Figure 9). More

specifically, AND-decomposition represents the process of achieving a goal (all sub-goals in the AND-decomposition

need to be satisfied for the goal to be satisfied). OR-decomposition, on the other hand, represents alternative ways for

achieving a goal (at least one of the sub-goals in the OR-decomposition needs to be satisfied for the goal to be

satisfied). In Figure 9 the secretary wants to achieve goals Write new doc., Get Student Record., and so on. The goal Get

Student Record is AND-decomposed to two sub-goals, namely Get Student Pers. Data and Derive Financial Stat.

The goal model ties together goals and documents. An actor possesses a set of documents. Possession is different from

ownership – that will be introduced in Section 2– for it refers only to the disposal of a document.

 We tie together goals and documents, within an actor’s scope, in various ways:

 an actor possesses (has) a set of documents;

 an actor reads one or more documents to fulfill a goal;

 an actor produces documents while fulfilling a goal;

 an actor modifies one or more documents while fulfilling a goal. A document is modified if, despite of the

change or update, the document identity is unvaried. For example, the personal data file of a student can be

modified if the student’s address changed.

Thus, we distinguish between documents that are read to fulfill a goal from documents that are modified or produced

while fulfilling a goal. This is modeled through relationships between goals and documents they respectively read,

modify and produce. Figure 5 depicts the graphical representation of goals and documents, while Figure 6 and Figure 7

shows the read, modify and produce relations as arrows from the goal to the document. The arrows are labeled with

read, modify and produce respectively and their direction reflects the actual direction of the actions.

Figure 5: Graphical representations of goal and document

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

6

In Figure 9, the secretary’s goal Write new doc. reads the document Document Template and modifies that document

once the actual letter is written by filling the template. On the other hand, the program coordinator’s goal Write doc for

I.O. produces the document Signed Official Doc.

Figure 6: Read and modify relationships

Figure 7: Produces relationship

The relation possess indicates that a role has a specific document, i.e. possesses the document and can furnish or

transmit it to other roles. For instance, the secretary is in possession of a Document template (Figure 8) that is read to

write a new document when requested by some student.

Figure 8: Example of Possession of documents from the running example

We consider social actors that collaborate to fulfill their own objectives. This reflects the way business is conducted in

reality, where social interaction is crucial to enable actors to achieve goals that they are not capable to achieve

themselves or that others can perform with higher quality or lower costs.

The purpose of the social view is to represent the social relationships between actors in the considered system. For this,

the social view supports two types of social relationship, namely goal delegation and document transmission. Whereas

the former captures the expectations that one actor has from others in terms of the goals that he can delegate, the latter

enables to represent the information flow – how documents are transferred from one actor to another. The social view

for the running example is depicted in Figure 9.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

7

Figure 9: Social View

A key concept in the social view is that of security need. Given that in STS-ml security is related to actors’ interactions,

the term security need refers to the expectation concerning security that actors impose on the interactions (represented

via social relationships) they participate in. Thus, we will analyze the two social relationships supported by the social

view and detail the security needs that are can be expressed over these social relationships.

The first social relationship, goal delegation, models the transfer of responsibilities from one actor to another. It links

two actors and a goal: a delegator actor delegates the fulfillment of a goal (delegatum) to a delegatee actor. A high-level

classification of security needs related to goal delegation is shown in Figure 10, see DelegationSecNeed.

Figure 10: Security needs supported in STS-ml

In Figure 11, the student delegates the fulfillment of goal Write doc for I.O., namely write document for immigration

office, to the program coordinator.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

8

(a)

(b)

(c)

Figure 11: Goal delegation example

In order to specify security needs over goal delegations, delegations are annotated via security needs the interacting

parties (being those agents or roles) want each other to comply with. Graphically security needs can be specified over

goal delegations by right-clicking on the goal and selecting the desired security needs from a given list. Certain security

needs cannot coexist, and as such cannot be selected together simultaneously over a goal delegation. The list allows for

the selection of one security need per type. More details will be provided in the following.

The selection of at least one security need shows a black padlock on the goal (see Figure 11a). The selection of security

needs is shown explicitly by clicking on the padlock, which shows small boxes below the delegated goal; each box has

a distinguishing color and label to reflect the selected security needs; no-redelegation makes an exception, for apart

from the representation of the colored and labeled box below the goal delegation, this security need is rendered

differently through a dashed arrow line—see Figure 11a—the delegation arrow line from the delegator to the delegatee

(solid—see Figure 11b—if such security need is not expressed). Figure 11c, instead, shows the case in which no

security needs are specified over a goal delegation. Below we provide the list of security needs the STS-ml modeling

language supports:

Non-repudiation (NonRep): the delegator actor wants the delegatee actor not to be able to challenge the validity of the

goal delegation. A non-repudiation security need requires the adoption of security mechanisms that guarantee that the

interacting parties cannot repudiate that the delegation has taken place. Graphically, the requirement is represented as an

annotation for delegations with the label “No-Rep”. We distinguish two types of non-repudiation:

Non-repudiation of Acceptance: required by the delegator, so that the delegatee cannot repudiate the delegation. As we

will detail in Section 3, such a security solution consists of the establishment of a commitment — for the non-

repudiation of that goal delegation — from the delegatee to the delegator. For instance, the program coordinator wants

non-repudiation for the delegation of the goal Write new doc delegated to the secretary (Figure 9). A possible way to

satisfy this security need is for the program coordinator to accept the delegation and provide proof of fulfillment to the

student;

Non-repudiation of Delegation: required by the delegatee, so that the delegator cannot repudiate having delegated to the

delegatee. This solution consists in the generation of a commitment — for the non-repudiation of the goal delegation —

from the delegator to the delegatee. For instance, in Figure 9, the secretary might want the program coordinator not to

repudiate having delegated to the former the goal Write new doc. A way to satisfy this security need is for the program

coordinator to digitally signing a delegation statement.

Redundancy: the delegatee has to adopt redundant strategies for the achievement of the delegated goal. He can either

use different internal capabilities, or can rely on multiple actors. Graphically, the requirement is represented as an

annotation for delegations with the label “Red”. We consider two types of redundancy:

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

9

Fallback redundancy: a primary strategy is selected to fulfill the goal, and at the same time a number of other strategies

are considered and maintained as backup to fulfill the goal. None of the backup strategies is used as long as the first

strategy successfully fulfils the goal.

True redundancy: at least two or more different strategies are considered to fulfill thegoal, and they are executed

simultaneously to ensure goal fulfillment.

Within these two categories of redundancy, two sub-cases exist: (i) only one actor employs different strategies to ensure

redundancy: single actor redundancy; and (ii) multiple actors employ different strategies to ensure redundancy: multi

actor redundancy.

In total, we can distinguish four types of redundancy, which are all mutually exclusive, so we can consider them as four

different security needs, namely (i) fallback redundancy single (fback_rs), (ii) fallback redundancy multi (fback_rm),

(iii) true redundancy single (true_rs), and (iv) true redundancy multi (true_rm). To ensure redundancy the delegator

actor should make a commitment to the delegatee actor that it will achieve the goal by adopting redundant strategies in

compliance with the type of redundancy required by the corresponding security need. An example of redundancy is that

of secretary requiring the IS manager true redundancy single when delegating the goal Obtain UTD Statement, see

Figure 9.

No-redelegation: this requirement is expressed over goal delegations, and it is the delegator’s request for the delegatee

to take full responsibility for achieving the delegated goal, without relying on any other actor. The delegatee shall

therefore avoid delegating the goal or any of its subgoals, should there be any. Graphically, the requirement is

represented as an annotation for delegations with the label “No-del”, which stands for “no-redelegation”. A main reason

for specifying a not-redelegation requirement concerns trust: the delegator trusts that specific delegatee for the given

goal, but does not trust other actors the delegatee might want to involve. However, for the time being, in STS-ml we do

not explore the interrelations between trust and security requirements. An example of such security need is that of the

program coordinator that wants the secretary not to redelegate goal Write new doc, see Figure 9.

Trustworthiness: this security need specifies a requirement to potential actors playing the delegatee role. Only delegatee

actors that are trustworthy can play that role for the delegation to take place. In Figure 9, the delegation between the

program coordinator and the secretary will take place only if the secretary is trustworthy.

Availability: the delegator wants the delegatee to guarantee a minimum availability level concerning the provision of the

delegated goal. If one conceives the delegatee as a service provider (where the service is to satisfy the goal), availability

corresponds to an uptime guarantee on service provision. For instance, the secretary requires the IS manager to ensure

an availability level of 90% over the goal Obtain UTD Statement, see Figure 9.

Authentication: For the delegator, this requirement about authenticity indicates the delegatee’s request that the delegator

shall be authenticated. This is the kind of authentication that is typically implemented in electronic commerce websites,

wherein a certification authority guarantees the authenticity of the seller’s website. For the delegatee, this type of the

authenticity requirement expresses the delegator’s need that the delegatee should authenticate. We encounter this kind

of authentication every day when we browse the web and use our credentials (username/password) to access web

information such as our email. In Figure 9 the delegation of the goal Obtain UTD Statement from secretary to the IS

manager requires the authentication of both the delegator and the delegatee.

Actors want to achieve goals, which might imply the use of some information (document). We distinguish actors that

have the document containing the needed information and can provide it to others, from actors that need the said

information (documents). At a given moment of time, an actor can be in possession of the document and may transmit it

to other actors. In STS-ml the document transmission relationship is used to capture the exchange of information

between actors (Figure 12), where a sender actor transmits a document to a receiver actor. A document can be

transmitted only by an actor that possesses it. Transmission refers strictly to the actual supply/delivery of the document.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

10

Figure 12: Document transmission

Information as is (e.g. ideas) cannot be transferred if not explicitly made concrete by a document (e.g. a paper, an e-

mail). We will further elaborate on this distinction in Section 2.2.

Figure 13: Expressing security needs over document transmissions

The transmission of documents can be subject to security needs as well (see Figure 13). Graphically the expression of

security needs and their selection is similar to that of goal delegations, see Figure 13. STS-ml supports the following

security needs over document transmissions:

 Integrity of transmission: requires the sender to guarantee the integrity of the given document while providing

it. For instance, in our running example the secretary requires IS Manager to guarantee the integrity of the

document Income Statement while transferring it to the secretary. A possible way for the IS Manager to satisfy

this requirement is to digitally sign the document before emailing it. The specification of security needs over

document transmission is similar to the one over goal delegations (see Figure 9).

 Document Availability: requires the sender to guarantee an availability level of x% for the transmission of the

specified document (similar to availability in goal delegation). For instance, while providing the document

Income Statement, IS Manager is required by the Secretary to ensure an availability level of 70% for the

transmitted document, see Figure 9.

 Confidentiality of transmission, which requires the transmitted to guarantee the confidentiality of transmission

of the given document while providing it. For instance, the IS Manager is responsible to ensure the

confidentiality of transmission of the document Income Statement, while providing it to the Secretary.

 Authentication: this requirement about authenticity could be specified either by the sender or by the receiver to

the other party during a document transmission. Sender authentication indicates the receiver’s request that the

sender shall be authenticated. This is the kind of authentication that is typically implemented in electronic

commerce websites, wherein a certification authority guarantees the authenticity of the seller’s website.

Receiver authentication expresses the sender’s need that the receiver is authenticated. We encounter this kind

of authentication every day when we browse the web and use our credentials (username/password) to access

web information such as email.

Apart from these security needs, which are related to the actual transfer of documents, STS-ml supports another set of

security needs, which restrict the way received documents can be read, modified, produced, and further propagated.

STS-ml takes these needs into account by considering the social view together with the information and authorization

views that are presented in Sections 2.2 and 2.3 respectively.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

11

2.1.1 Capturing normative requirements through organizational
constraints

Apart from the security needs specified by actors when entering into interactions, there are others which are dictated by

the environment, or the underlying organization, dictating role-role relations as well as agent-role and goal-goal

relations. We are currently enriching STS-ml to support Separation of Duties, and Combination of Duties. These

security needs are generally derived (defined) by law, organizations, or business rules and regulations. Therefore, they

are somewhat different from the rest of the security needs we have considered so far. As a result, the commitments that

are generated from their specification also differ, as they are not made from an actor to another actor, but instead from

the actors towards the organization/law/regulation. Therefore, we represent these commitments as having only the

responsible actor, but leave a dash (-) for the requestor actor.

 Separation of duties (SoD): we distinguish two cases of separation of duties.

o Between roles: defines incompatible roles, in the sense that when specified between the two roles, it does

not allow the same agent to play both the roles.

o Between goals: defines incompatible goals, in the sense that when SoD is specified between two goals an

actor is not allowed to or should not achieve both.

Graphically we represent SoD constraints through the “incompatible” relationship, which is represented as a circle with

the unequals sign within. The relation is symmetric, and as such it does not have any arrows pointing to the concepts it

relates (these being either roles or goals). Figure 14 gives an example of SoD from the running example, in which

program coordinator and secretary are considered as incompatible roles, i.e., no agent can play these two roles

simultaneously.

Figure 14: Organizational constraints – separation of duties among roles

 Combination of duties (CoD): we distinguish two cases of combination of duties.

o Between roles: defines compatible roles, in the sense that when specified between two roles, CoD requires

that the same agent adopts both the roles if it plays any of them.

o Between goals: defines a relationship among two goals, so that a role (agent) achieving one of the goals

has to achieve also the other goal.

Graphically we represent a CoD constraint through the “combines” relationship, which is represented as a circle with

the equals sign within. The relation is symmetric, and as such it does not have any arrows pointing to the concepts it

relates (being these roles or goals). Figure 15 shows that the goals Derive Financial Stat and Fill tax Returns should be

combined, given that a CoD constraint is specified between them.

Figure 15: Organizational constraints – combination of duties among goals

Similarly to the specification of security needs over goal delegations and document transmissions, the specification of

these organizational constraints, SoD and CoD, leads to the generation of commitments for their satisfaction.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

12

2.1.2 Threats represented in STS-ml

Security analysis often considers the perspective of possible malicious users attacking the system by exploiting system

vulnerabilities. In the same spirit, STS does not overlook threats, and supports the identification of social and

organizational threats, which do not necessarily exploit technical vulnerabilities of a software system. STS-ml

represents threats through events that exploit the vulnerabilities of actors' supporting assets (subgoals and documents) in

order to undermine their primary assets (root goals and information). The primitives of STS-ml are the entity Event and

the relationship threatens, which links an event to a document or a goal. Note that the STS method assumes that the

represented events threatening actors' assets and the identification of the assets they threaten are the result of risk

analysis (following the identification phase of some risk analysis method, which is out of the scope of our work. STS

offers stakeholders a way to verify how the identified events threaten the rest of their assets, while leaving them the

choice among CORAS
2
, OCTAVE

3
, or any other risk analysis method that better suits their needs.

As shown in Figure 16 there are several constructs that could be threatened by an event, represented namely with

associations towards roles, agents, goals, documents and delegations. Our primary focus is towards documents and

goals, as important actor assets.

Figure 16: Threat events related to various model constructs

Figure 16 represents a simple example illustrating several different threatening events:

 DDos attack on service: since there is a goal for IS Manager to Get Student Pers. Data, an unwanted event is

that some internal or external entity manages to deliberately block this.

 Information integrity loss: it would be a serious threat if an external malicious entity is able to make an

unauthorized modification of student’s personal data file.

2 http://coras.sourceforge.net
3 http://www.cert.org/resilience/products-services/octave/octave-method.cfm

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

13

2.2 Information view

Documents play a fundamental role in the social view: actors possess documents, as well as they read, modify, produce,

and transmit them while fulfilling their goals. Especially when we consider security, it is very important to consider the

documents that are exchanged among various actors, and define what information they represent. This is fundamental to

keep track of the information flow, being this information electronic, physical or related to some specific knowledge.

The purpose of the information view is to introduce primitives and relationships to differentiate between (as well as

relate) informational elements (information) and representation means (document). See the meta-model in Figure 17.

We use the concepts of information and document to respectively identify and distinguish information from its

representation. Resource is a generic term to represent documents and information.

Figure 17: Information view metamodel

Information representation in terms of documents is represented through the Tangible By relationship. For instance, in

Figure 18, the Financial Status of the student is an information entity (it exists irrespective of any document

representing it). Such information can be transferred only if made tangible by some document. For example, when

contained in a document Income Statement, see the Tangible By relationship from information Financial Status towards

document Income Statement in Figure 18.

Information view represents who are the owners of the information given information, in order to make it clear who are

the owners of the information represented by the documents exchanged in the social view. Ownership is denoted by an

arrow starting from an actor towards the information owned by that actor with the label “Own”. For instance, in our

running example, the student owns information Personal Data and Financial Status (Figure 18).

Note that ownership is different from possession. Actors might possess documents withholding important information,

however when actors transmit information they own towards others via document transmissions, they do not give up the

ownership of information. For instance, Secretary possesses document Income Statement, but does not own information

Financial Status, instead the student is the owner of this information.

Figure 18: Information view for the running example

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

14

This distinction stands at the basis of security analysis, allowing security requirements engineers to capture possible

violations of security needs, identify unauthorized manipulation of information, and so on.

Another feature of the information view is to support composite information (documents). Broadly, information

contains other pieces of information, or documents can be created by putting together other documents. In the social

view we keep a clean representation of documents. In the information view, instead, we want to know the pieces of

information composing a given piece of information or which documents are contained within another document, so

that we can reason about possible security issues at different levels of information or document structure enabling fine-

grained specification of security needs. This structuring is supported by means of the part Of relationship, which is

applied between information entities or between documents. For instance, this allows representing that a Personal Data

file is part of the Student Supporting Doc the student should deliver.

The information view is flexible in representing information, documents, and the relations between them. Some

examples:

Information can be made tangible by (more) different documents.

 A document can have no relevant information. This is the case, for instance, of the Document Template, which

contains no relevant (read, confidential) information for the purpose of issuing the permit of stay.

 A document might be part of multiple documents. This might be the case of Income Statement, which might be

also part of a scholarship application.

 Considering the kind of information that flows in an application, we do not specify vulnerabilities over

documents, as it would apply in other settings, in which we have physical resources that could be exposed to

certain vulnerabilities.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

15

2.3 Authorization view

An adequate representation of authorizations is necessary to determine if information is exchanged and used in

compliance with confidentiality restrictions. The information owner is the unique actor that can legitimately transfer

rights to other actors. However, it might transfer full rights to another actor, so that the latter becomes entitled to

transfer the same rights the owner can grant.

The authorization view presents the authorizations actors grant to others over information starting from the information

owner or actors that have authority to do so. Figure 19 shows the meta-model of this view.

Figure 19: Authorisation view metamodel

STS-ml includes the authorization primitive, to capture two key concepts in security, namely permissions and

prohibitions. The main idea behind this view, is that actors (typically information owners) may want to specify what

they allow or prohibit others to do over their information. Following this intuition, the authorization relationship in

STS-ml is specified over four dimensions:

 Allowed/prohibited operations: define whether the authorized actor is permitted (graphically green tick

symbol) or prohibited (red cross symbol) to Read (R), Modify (M), Produce (P), and/or Transmit (T) any

document that makes tangible the information (operations are graphically represented in four boxes with

distinguishable labels, R, M, P, and T respectively) for which authorization is passed, see Figure 20.

 Information: authorization is granted over at least one information entity. Give the structuring of information

entities in terms of part-of relationships, authorizing some actor over some information means that the actor is

authorized over parts of information as well. This is because ownership of information propagates top-down

through part-of relationships. The information entities over which authorization is passed is represented right

below the allowed/prohibited operations, see Figure 20.

 Scope of authorization: authority over information can be limited to the scope of a certain goal. The delegator

wants to ensure the information is manipulated for a specific purpose (achieving the specified goal). Our

notion of goal scope adopts the definition in Dalpiaz et al. [5], which includes the goal tree rooted by that goal.

As a result, if a goal is specified in the scope of authority, authority is given to utilize the information not only

for the specified goal, but also for all its sub-goals. We assume that goal decompositions are part of the domain

knowledge: there is no dispute between actors about how goals are hierarchically structured.

 Transferability of the permissions: it specifies whether the actor that receives the authorization is in turn

entitled to transfer the received permissions or specify prohibitions (concerning the received permissions) to

other actors. Graphically, transferability of the authorization is allowed when the authorization arrow line

connecting the two actors is solid, while it is not granted when it is dashed.

Figure 20 shows the authorization view for the running example. Facts about ownership are preserved from the

information view. The graphical representation of the authorization relationship has changed from the initial version of

STS-ml.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

16

Figure 20: Authorization view for the stay permit scenario

Graphically authorization relationships reflect the four dimensions discussed above. An authorization box contains three

slots: the upper defines the allowed/prohibited operations (from left to right: Read, Modify, Produce, and Transmit); the

middle slot is the list of information over which authorization is delegated; and the lower slot is the goal scope. The

fourth dimension, transferability, is captured through the authorization line: authorization to delegate is transferable

(full line) or not (dashed line). For example, the student delegates the permission to read Personal Data and Financial

Status to the program coordinator, in the scope of goal Write doc for I.O, granting a transferrable authority. Since

authority to delegate is transferred, the program coordinator delegates authority to read Personal Data and Financial

Status to the secretary in the scope of goal Get Student Record (which is a sub-goal of Write doc for I.O.), granting a

non-transferrable authorization.

The authorization view expresses security needs about the use of information. In contrast to the social view, here

security needs are expressed implicitly, through the authorizations actors pass to others. We have refined the supported

security needs by considering all the different authorizations that are granted through the authorization view into the

following, for each type of operation that can be performed and depending on whether authority is limited to a goal

scope or not. As such, STS-ml supports the following security needs related to the use of information:

 Non-reading: prohibiting the read operation expresses a non-reading security requirement, which requires the

information is not read in an unauthorized way; it implies that the authorizee should not read any documents

making tangible the specified information. There are no examples of the non-reading security requirement in

our running example.

 Non-modification: prohibiting the right to modify information expresses a security need about the non-

modification of such information. The IS Manager expresses such security need on the delegation of authority

over information Personal data and Financial status to the secretary, see Figure 20.

 Non-production: requires the information is not produced in a new document in an unauthorized way. For

example, the student requires the program coordinator not to produce his Personal Data and Financial Status,

see Figure 20 in which the operation P is prohibited being crossed over.

 Non-disclosure: requires that no document representing the specified information is transmitted to other actors

by the authorizee. For example, the IS Manager expresses such security need in the authorization over

information Personal Data and Financial Status granted to the secretary by prohibiting the right to transmit,

operation T is crossed over in Figure 20.

 Need-to-know: when restricted to a goal scope, the authorization reflects a need-to-know security need. Indeed,

the actor granting the authority enables the authorizee actor to perform operations or to further reauthorize

others as long as the operations or the authorization are within the specified goal scope. The student’s

authorization to the IS Manager expresses a need-to-know security need: Personal Data and Financial Status

should be read, produced or transmitted only in the scope of goal Write doc for I.O.

The socio-technical security

modeling language

Modeling security needs with STS-ml: the operational view

17

 Non-reauthorization: requires that the authorization is not transferrable, i.e., the authorizee does not further

transfer rights for operations not granted to him or when transferability is set to false. This means that any non-

reading, non-modification, non-production and non-disclosure security need implies a not-reauthorize security

need for the operations that are prohibited.

The socio-technical security

modeling language

Deriving security requirements

18

3 Deriving security requirements

The operational view described in Section 2 models how the organization operates and helps analysts to capture and

represent stakeholders’ security needs. As shown in Section 2.3 however, security needs are often modeled implicitly.

Thus, their identification should be facilitated via automated reasoning. The security requirements are automatically

derived from the operational view and are expressed via social commitments that fulfill the required security needs. For

each security need specified over an interaction, a commitment on the opposite direction is expected for the fulfillment

of that security need. Security requirements are derived not only from security needs, but take into account also the

organizational constraints expressed over an STS-ml model. Whenever an organizational constraint is expressed, be it

an SoD or a CoD constraint, a commitment for its fulfillment is automatically generated via the supporting toolset, STS-

Tool.

Figure 21: Security requirements metamodel

An important feature of STS-ml is that it relates security requirements to interaction between actors (interaction is

understood in business terms). Interaction is captured by the social relations supported by STS-ml, with the intent to

represent interactions among service users (represented by delegator, receiver, or authorizee) and service providers

(delegatee, sender, or authorizer). On top of these interactions security needs are expressed.

At requirements time, commitments are expressed at the level of roles (with the exception of the agents that are already

known and modeled) for the satisfaction of these needs. At runtime, these commitments shall be made by the involved

agents (playing those roles). Since security needs are generally expressed by the service user towards the service

provider, the latter shall make a commitment for the satisfaction of the expressed security need. After their

identification, it is therefore crucial, during the architectural design phase, to link commitments to technical security

mechanisms that offer guarantees for the satisfaction of security requirements. The commitments view, that helps

capture security requirements, is graphically depicted in Figure 21. The notion of social commitment is specialized so

that it can be exploited in the context of security requirements. A commitment is made by a debtor actor (responsible) to

a creditor actor (requester) for the satisfaction of a security need (requestee). In turn, security needs are defined in terms

of the concepts used in the operational view (as shown in the previous sections). In the case of organizational

constraints, the commitment is required by the STS, representing the socio-technical system, to all actors participating

in the given system, as already explained in Section 2.1.1.

The way commitments are implemented is highly dependent on whether the involved actors are agents or roles. If the

debtor is a role, making that commitment becomes a necessary condition for any agent playing that role, since the

debtor is the responsible actor for bringing about the security requirement to satisfy the security need being specified.

The commitment becomes part of the description of the role. If the creditor is a role, that commitment is a security

guarantee for any agent playing that role, since the creditor is the requester of the security need. If the debtor is an

agent, the system-to-be should ensure that the specific agent makes those security commitments when interacting with

others. If the creditor is an agent, such commitments become prerequisites for other agents interacting with it.

Table 1 presents the commitments’ types supported by STS-ml to capture security requirements for each expressed

security need. In these commitments a and b refer to actors, R refers to roles, I stands for set of information (as such

could contain also only one single information entity), G a set of goals (single specific goals for commitments (w) – (z),

following their semantics described below), D for documents, while Ops is the set of operations {R,M,P,T} actors can

perform over information through goal-document relationships or document transmissions.

The socio-technical security

modeling language

Deriving security requirements

19

Id Commitment type

(a)
C(b, a, authorised(a,b,I,G,Ops,t), need-to-know(I, G, Ops))

Actor b commits to actor a that information in I will be read/modified/created/transmitted (as specified in

Ops) only in the scope of the goals in G

(b)
C(b, a, authorised(a,b,I,_,Ops\{T},_),non-disclosure(I))

b commits to a that information in the set I will not be further transmitted

(c)
C(B, A, authorised(a,b,I,_,Ops\{P},_), non-production(I))

b commits to a that information in I will not be produced in an unauthorized way

(d)
C(b, a, authorised(a,b,I,_,Ops\{M},_), non-modification(I))

a commits to b that information in I will not be modified in an unauthorized way

(e)
C(b, a,authorised(a,b,I,_Ops\{R},_), non-reading(I))

b commits to a that information in I will not be used in an unauthorized way

(f)
C(b, a, authorised(a,b,I,_,Ops,false),non-reauthorization(b,c,I,G,Ops))

b commits to a that b will not reauthorize any other actor c
2

(g)
C(b, a, non-repudiation-of-acceptance(isdelegated(b,a,G)))

b commits to a that b will not repudiate that it (b) has been delegated the goals in G

(h)
C(a, b, non-repudiation-of-delegation(delegated(a,b,G)))

a commits to b that a will not repudiate having delegated b the goals in G

(i)
C(a, b, fback_rs(G))

a commits to b that fallback redundant strategies involving a single actor will be adopted to fulfil the goals

in G

(j)
C(a, b, fback_rm(G))

a commits to b that fallback redundant strategies involving multiple actors will be adopted to
fulfil the goals in G

(k)
C(a, b, true_rs(G))

a commits to b that true redundant strategies involving a single actor will be adopted to fulfill the goals in

G

(l)
C(a, b, true_rm(G))

a commits to b that true redundant strategies involving multiple actors will be adopted to fulfill the goals

in G

(m)
C(a, b, no-redelegation:(G))

a commits to b that goal G will not be delegated to others

(n)
C(a, b, availability(G,x%))

a commits to b that G will have a minimum availability level of at least x%

(o)
C(a,_,delegatedTo(b,trustw(b))

a commits to delegate only to b that has a minimum trustworthiness level of x

(p)
C(a, b, integrity(D))

a commits to b to guarantee the integrity of the transmitted document D

(q)
C(a, b, availability(D,x%)

a commits to b that it will guarantee a minimum availability level of x% for document D

(r)
C(a, b, confidentiality(D,x%)

a commits to b to guarantee the confidentiality of the transmitted document D

The socio-technical security

modeling language

Deriving security requirements

20

(s)
C(a,b,delegator-authentication(delegated(a,b,G))

a commits to b to authenticate before delegating G to b

(t)
C(b,a,delegatee-authentication(delegated(a,b,G))

b commits to a to authenticate for the delegation of goal G by a

(u)
C(a,b,sender-authentication(transmitted(a,b,D))

a commits to b to authenticate for the transmission of document D

(v)
C(b,a,receiver-authentication(transmitted(a,b,D))

b commits to a to authenticate for the transmission of document D by a

(w)
C(a,STS,role-sod(R1,R2))

acommits not to play both roles R1 and R2

(x)
C(a,STS,goal-sod(G1,G2))

a commits not to pursue both goals G1 and G2, i.e. not to be the final performer of both these goals

(y)
C(a,STS,role-cod(R1,R2))

a commits to play both roles R1 and R2

(z)
C(a,STS,goal-cod(G1,G2))

a commits to achieve both goals G1 and G2, i.e. to be the final performer of both these goals

Table 1: Commitment types to express security requirements

Table 2 lists the commitments for the stay permit scenario derived from the business view presented in the previous

sections. With the help of examples in Table 2, the semantics of the various commitment types in Table 1 may be easily

described as follows:

(a) A need-to-know commitment from b to a implies that a set of information I will be read / modified / produced /

transmitted (in accordance with the operations specified in Ops) only within the scope of a set of goals G. In

case the committed actor has the authority to delegate rights, other actors might in turn be authorized for the

information. However, to guarantee the commitment made by b, each of other actors has to make a

commitment to a for the need-to-know of the information. For example, in Table 2, the IS Manager commits

(C1) to the student for the need-to-know of Personal Data and Financial Status in the scope of goal Get

Student Pers. Data. Allowed operations are production and transmission. In turn, this implies a commitment

(C11) from the secretary to the IS Manager for that information and operations in the scope of the sub-goal Get

Student Record.

(b) A non-disclosure commitment guarantees that the debtor will not transmit information to other actors. This

type of commitment protects delegations of authority that allow for transmitting the information. For example,

the secretary commits (C18) to the IS Manager for the non-disclosure of Personal Data and Financial Status.

(c) A non-production commitment for some information I implies that the information will not be produced

through the creation of any new document. For example, the program coordinator (C2) commits to student not

to produce his Personal Data and Financial Status.

(d) A non-modification commitment for a set of information I implies that the information will not be modified.

The debtor actor commits that not only will he not modify the information, but also that — if he transmits such

information to other actors — each of these actors will commit for the non-modification of the information.

For example, the program coordinator commits (C5) to the student for the non-modification of Personal Data

and Financial Status, since he gets no authority to modify such data. In turn, a similar commitment (C13) is

made from the secretary to the program coordinator.

(e) A non-reading commitment for a set of information I implies that the information will not be read. We do not

have a non-reading security need expressed in our running example.

The socio-technical security

modeling language

Deriving security requirements

21

(f) A non-reauthorization commitment for a set of information I implies that no authorization for the information

will be passed to other actors. For example, the program coordinator (C8) commits to student not to pass

authorization on producing his Personal Data and Financial Status.

(g) Commitments for non-repudiation required by the delegator are essential to guarantee accountability. We are

concerned here with non-repudiation of goal delegations. The committed actor ensures that he will not

repudiate that he was delegated the fulfillment of the goals in G, non-repudiation of acceptance. For example,

the program coordinator commits (C9) to the student for the non-repudiation of goal Write doc for I.O.

(h) A non-repudiation-of-delegation commitment requires the delegator not do deny (repudiate) having delegated

the goal to the delegatee
4
.

(i) A fallback redundancy single (fback_rs) commitment guarantees that the goals in G will be fulfilled by

adopting fallback redundant strategies by the committed actor, and no external actors will be involved.

(j) A fallback redundancy multi (fback_rm) commitment guarantees that adopting fallback redundant strategies by

the committed actor will fulfill the goals in G, and external actors might be involved as well.

(k) A true redundancy single (true_rs) commitment guarantees that the goals in G will be fulfilled by adopting true

redundant strategies by the committed actor, and no external actors will be involved.

(l) A true redundancy multi (true_rm) commitment guarantees that adopting true redundant strategies by the

committed actor will fulfill the goals in G, and external actors might be involved as well. For example, the IS

Manager commits (C21) for redundant fulfillment (more specifically using true redundancy multi) of goal Get

Student Pers. Data. The IS Manager can fulfill it by either retrieving two statements from different databases,

or delegating the task to two technicians.

(m) A no-redelegation commitment is a guarantee by the debtor actor that a goal will be fulfilled without

delegating it to others. Such restriction applies to the descendants of the goal in the goal hierarchy. For

example, the IS Manager Commits (C20) to the secretary that he will not delegate goals Get Student Pers. Data

to others, as the secretary trusts only the manager and not technician for such confidential activities.

(n) An availability commitment over goal delegations guarantees that a minimum availability level, as specified by

the security need, will be ensured for the delegated goal.

(o) A trustworthiness commitment over goal delegations guarantees that the delegator will only delegate to

delegatees with a minimum trustworthiness level, as specified in the security need.

(p) An integrity commitment over a document transmissions guarantees that the sender will ensure the integrity of

transmission for the transmitted document. For example, IS Manager commits to Secretary that will assure

integrity of transmission for document Income Statement (C23).

(q) An availability commitment over document transmissions guarantees that a minimum availability level will be

ensured for the transmitted document. For example, the Secretary commits to IS Manager that a 70%

minimum availability will be assured for document Income Statement(C24).

(r) A confidentiality commitment over document transmissions guaranties that the sender will ensure the

confidentiality of transmission for the transmitted document. For example, IS Manager commits to Secretary

that will assure confidentiality of transmission for document Income Statement (C25).

(s) A delegator-authentication commitment over goal delegations guaranties that the delegator will authenticate

for the delegation to take place.

(t) A delegatee-authentication commitment over goal delegations guaranties that the delegate will authenticate

before taking action towards the achievement of the delegated goal. For example, the IS Manager commits to

Secretary that it will authenticate for achieving the delegated goal Obtain UTD Statement.

(u) A sender-authentication commitment over document transmissions guaranties that the sender will authenticate

for the transmission to take place.

(v) A receiver authentication commitment over document transmissions guaranties that the receiver will

authenticate before taking any actions over the transmitted document. For instance, the Secretary makes a

commitment to authenticate in order to have document Personal data file from the IS Manager.

4 The supporting toolset offers the opportunity to specify a non-repudiation-of-delegation-and-acceptance commitment that is equivalent to two

commitments, one made by the delegator for not repudiating the delegation it has passed to the delegatee, and the second one made by the delegatee

for not repudiating having been delegated the fulfillment of the delegated goal.

The socio-technical security

modeling language

Deriving security requirements

22

(w) A commitment for role-based separation of duties (not-play-both) guarantees that no agent will adopt roles

among which separation of duties is expressed. For instance, all agents in the running example commit not to

ever play both roles Program Coordinator and Secretary, if they play one of these roles (C26).

(x) A commitment for goal-based separation of duties (not-achieve-both) guarantees that for every agent A, A will

not achieve both goals G1 and G2, should A take actions to achieve one of the two (either G1 or G2).

(y) A commitment for role-based combination of duties (play-both) guarantees that if agent A will adopt role R1

(R2), it will adopt role R2 (R1) too.

(z) A commitment for goal-based combination of duties (achieve-both) guarantees that for every agent A, if A

pursues goal G1 (G2), then A should pursue G2 (G1) too. For instance, any agent in our running example

should achieve both goals Derive Financial Stat and Fill tax returns, if it decides to achieve one of them (C27).

ID Debtor Creditor Security Requirement

C1 IS Manager Student
need-to-know({PersonalData,FinancialStatus}, {Get Student

Pers. Data}, {u,m})

C2 IS Manager Student non-production({PersonalData,FinancialStatus})

C3 IS Manager Student non-disclosure({PersonalData, FinancialStatus})

C4 IS Manager Student
need-to-know({PersonalData, FinancialStatus}, {Write doc

for I.O.}, {u})

C5 IS Manager Student non-modification({PersonalData, FinancialStatus})

C6 Program Coordinator Student non-production({PersonalData, FinancialStatus})

C7 Program Coordinator Student non-disclosure({PersonalData, FinancialStatus})

C8 Program Coordinator Student non-reauthorization({PersonalData, FinancialStatus}, {p})

C9 Program Coordinator Student non-repudiation({Write doc for I.O.})

C10 Secretary Program Coordinator non-repudiation-of-delegation({Write new doc})

C11 Secretary Program Coordinator non-repudiation-of-acceptance({Get Student Record})

C12 Secretary Program Coordinator no-redelegation({Write new doc})

C13 Secretary Program Coordinator
need-to-know({PersonalData, FinancialStatus}, {Get Student

Record}, {u})

C14 Secretary Program Coordinator non-modification({PersonalData, FinancialStatus})

C15 Secretary Program Coordinator non-production({PersonalData, FinancialStatus})

C16 Secretary Program Coordinator non-disclosure({PersonalData, FinancialStatus})

C17 Secretary IS Manager
need-to-know({PersonalData, FinancialStatus}, {Get Student

Record}, {p,d})

C18 Secretary IS Manager non-production({PersonalData, FinancialStatus})

C19 Secretary IS Manager non-disclosure({PersonalData, FinancialStatus})

C20 IS Manager Secretary no-redelegation({GetStudentPers.Data})

C21 IS Manager Secretary non-repudiation({GetStudentPers.Data})

C22 IS Manager Secretary true_rm({GetStudentPers.Data})

C23 IS Manager Secretary integrity({Income Statement})

C24 IS Manager Secretary availability(Personal Data File, 86%)

C25 IS Manager Secretary confidentiality({Income Statement})

C26 All agents STS not-play-both(ProgramCoordinator, Secretary)

C27 All agents STS pursue-both(DeriveFinancialStat, Fill tax returns)

Table 2: An excerpt of security requirements expressed via commitments

Operationalizing commitments: the security commitments specified in the commitments view are security

requirements at the organizational level. However, their level of abstraction is closer to technical requirements than

existing goal-oriented methods for security requirements engineering. We show some examples to justify the validity of

our claim.

Commitment C1 requires ensuring need-to-know. A possible technical requirement that operationalizes C1 is to log

access to the information system and require IS users to specify the purpose for which they access confidential data.

The purpose might be derived from interaction. In our example, the system to-be can match whether the IS manager is

utilizing Personal Data and Financial Status upon a request (e.g. by the secretary) to get student personal data.

The socio-technical security

modeling language

Deriving security requirements

23

Commitment C5 is about non-modification. At least two technical options exist: preventively denying modification

grants to the Program Coordinator, or monitoring its access to Personal Data and Financial Status.

C9 is about non-repudiation of goal Write doc for I.O. To ensure C9, an information system can be developed; students

have to send their requests (delegations) through it. The Program Coordinator has to accept the task. The log of the

information system is the proof that the delegation was accepted.

To guarantee commitments C19 and C20, non-disclosure and no-redelegation, respectively, the information flow should

be followed. While C19 directly refers to information, C20 does it indirectly, since the delegated goals produce

documents that can be traced.

The socio-technical security

modeling language

The STS method for security requirements engineering

24

4 The STS method for security requirements engineering

The STS-method supports security requirements engineering considering security issues as early as in the requirements

phase. It takes an interaction-oriented stance to security, allowing actors to express their expectations regarding security

over interactions with other actors. We consider these expectations to be the desired security needs from which security

requirements are derived. On the other hand, the method enables to capture the business rationale behind these security

requirements, representing actors’ business policies, that is, their goal models (how they intend to achieve their goals).

STS method builds on top of Tropos [9] and its security-oriented extension [4]. As such, it includes high-level

organizational concepts such as actor, goal, delegation, etc. Security requirements are mapped to social commitments

[7] — contracts among actors — that actors in the STS shall comply with at runtime.

STS method is based on the idea of building a model of the system that is incrementally and iteratively constructed and

refined by focusing on different perspectives (views) at a time. That is, modeling consists of building three

complementary views: social, information, and authorization view, so that different interactions among actors can be

analyzed by working on a specific perspective (view) instead of building a single big model of the system-at-hand. This

approach promotes modularity and helps designers separating concerns.

The STS method considers a socio-technical system as composed of actors that have objectives to achieve and interact

with others to get things done. We consider social actors that collaborate to fulfill their own objectives. The social view

represents actors as intentional and social entities. Actors are intentional as they have goals they want to achieve, and

they are social, because they interact with others to get things done, mainly by delegating goals. Actors may possess

documents, they may read, modify, or produce documents while achieving their goals, and they may transmit

documents and exchange information through document transmissions to other actors.

The STS method distinguishes between information and its representation via documents. It is important to keep track

of how information and documents are interconnected, to be able to identify which information actors manipulate, while

using, modifying, producing, or transmitting documents for achieving their goals. This is the purpose of the information

view, which shows the informational content of the different documents in the social view, and transmits a structured

representation of the various information pieces and documents in the given setting as well.

An adequate representation of authorizations is necessary to determine if information is exchanged and used in

compliance with confidentiality restrictions. The authorization view shows the permission flow from actor to actor, that

is, the authorizations actors grant to others about information, specifying the operations actors can perform on the given

information, namely read, modify, produce, and transmit. Apart from granting authority on performing operations, we

consider also whether authority to further give authorizations is granted.

Following our intuition of relating security to interactions, we allow stakeholders to express their security requirements

over goal delegations, document transmissions and authorizations regarding information. We consider the interplay

between different requirements sources: the business policies of individual actors, their security expectations on other

actors, and the normative requirements in the STS. For more details on the three views and the supported security

requirements, see Section 2.

We present now the steps the security requirements engineer can follow in order to perform the modeling and analysis

activities (see Figure 22), while illustrating them in building the model for the running example. Each view is built

incrementally, considering the various stakeholders to be represented, their assets, interactions, and so on, until all

necessary details are modeled. Thus, each step might be repeated several times, till the security requirements engineer

considers the model to be complete. Moreover, for every view details are refined, so that changes in one view are

reflected in the other, to maintain consistency of the overall model.

 Phase 1. Model the Social View: STS modeling starts with the representation of the actors present in the

scenario (step 1.1. Identify stakeholders). We consider actors to be either agents, to refer to concrete

participants, or roles, to refer to abstract actors (abstracted from agents, used when the actual participant is

unknown). In our running example, we represent for instance Student as a role. The reason is that Student can

The socio-technical security

modeling language

The STS method for security requirements engineering

25

be instantiated by any international student studying at the University of Trento. From the description of the

running example we focus on the actors highlighted in Section 1.2. If we considered a broader scope, say enter

in the details of programs offered by UniTN and represent UniTN as an actor of the system, then UniTN would

be an agent, because in this context this actor is invariably the same. Moreover, this is an actor we know

already at design time when we create the models that are going to be part of the system. Intuitively, this step

is repeated for as many times as there are actors present in the considered setting.

o step 1.2. Identify stakeholders’ assets and interactions: after identifying stakeholders, we continue with

the identification of their assets. We consider actors that have goals to achieve and that possess

documents necessary for the achievement of their goals. Goals and documents are what we call actors’

assets. Actors may have the capability to achieve some of their goals, for others they need to rely on other

actors. Similarly, they might possess some of the necessary documents, for others they need to rely on

other actors that can transmit the desired documents to them. This reflects the way business is conducted

in reality, where social interaction is crucial to enable actors achieve goals that they are not capable of

achieving themselves or that others can perform with higher quality or lower costs. The STS method

supports the identification of actors’ assets considering the various actors one by one, while refining their

inner models, and exploring their interactions with other actors at the same time. In step 1.2., we start

with the identification of stakeholders’ assets, namely their goals. Actors want to achieve one or more

goals: for instance, Secretary has goal Get Student Record, for which it reads document Student

Supporting Doc (see Figure 9 in Section 2.1). Goals are refined by AND/OR-decompositions obtaining

goal trees: online system built is the root goal to be fulfilled. The root goal Get Student Record is and-

decomposed into Get Student Pers. Data and Derive Financial Stat. The goal Derive Financial Stat is

further decomposed through an and-decomposition into goals Obtain UTD statement and Check Income

Adequacy. The refinement process continues for the other goals too. For simplicity, we will not enter the

details of other actors’ goal models.

o Identify interactions (iteration of step 1.2): for some goals, actors need to rely on others through goal

delegation. We identify the interactions the actor needs to enter in order to achieve its goals (step 1.2.

Identify stakeholders’ assets and interactions). For instance, the Secretary relies on IS Manager to obtain

student’s personal data, by delegating to IS Manager the goal Get Student Pers. Data. Similarly, it

delegates the goal Obtain UTD statement, again to IS Manager.

o Are there any Security Requirements? (step 1.3. Express security requirements): this is a particular

feature of the STS method that allows stakeholders to express their concerns regarding security over the

interactions they take part. Following this, the security requirements engineer analyses goal delegations,

to see if any of the supported security needs applies over the identified goal delegations. In Figure 9, the

Secretary wants the IS Manager not to further delegate goal Get Student Pers. Data. A more complete list

of supported security requirements is provided in Section 2.

o Refining the Social View: to achieve their goals, actors might read, modify, or produce documents

(iteration of step 1.2.). So, in this iteration of step 1.2., we identify the rest of stakeholders’ assets, namely

their documents. For instance, Secretary needs document Personal Data File to achieve goal Get Student

Pers. Data, and it reads document Income Statement to achieve goal Obtain UTD Statement.

o step 1.4 Model threats: represent the events that threaten actors’ assets, namely their goals and

documents. Broadly, an event threatening a goal means that the goal cannot be achieved, whereas an

event threatening a document means that the document becomes not available. In our example, the

document Personal Data File produced by IS Manager is threatened by an event. Since this document is

read by the Secretary to have student’s personal data, it is important to know whether this will have an

effect on the secretary achieving this goal (more details on this are provided by the activities in Phase 4,

namely step 4.3.).

The socio-technical security

modeling language

The STS method for security requirements engineering

26

Figure 22: STS method

 Phase 2. Model the Information View: as described earlier, the STS method distinguishes between

information and its representation. Information as is cannot be transferred or manipulated, instead information

entities are represented through documents, and all operations are performed over the latter. In the social view

we represented actors’ documents, the exchange of documents, and the different operations actors might read

these documents to achieve their desired goals. We now switch to the information view and represent

information entities relating them to the documents within which they are contained. The roles, agents, and

their respective documents are already modeled in the social view, so they are preserved also in the

information view. Hence, the designer needs just specify what information they represent (the relation

TangibleBy is used to express that an informational entity is represented or made tangible by a given

document). For instance, document Income Statement of IS Manager contains the Financial Status of the

various students (see Figure 18).

o Model ownerships, step 2.1. Identify information and its owner: after identifying the informational

content of the modeled documents, we define who the owners of the different information entities that we

have identified are. In our example, the Student is the owner of his Personal Data and Financial Status,

whereas Program Coordinator is the owner of his own Signature.

o Step 2.2. Represent information structure: apart from representing the different information pieces and the

respective documents, the designer can capture the structure of information and documents for the given

scenario. Since documents are preserved from the social view, in order to represent how the different

documents are interconnected, the designer simply needs to relate the various documents (we use the Part

Of relationship to capture this structure). The same applies to building the information structure, the

different information pieces are connected through Part Of relationships. For instance, documents Income

Statement and Personal Data File are part of document Student Supporting Doc, see Figure 18.

 Phase 3. Model the Authorizations View: starting from information owners, we draw the authorizations they

grant to other actors. In our example, the Student authorizes the Program Coordinator to read information

Financial Status and Personal Data in the scope of goal Write Doc for I.O but prohibits the right to produce

(see Figure 20). Security requirements over authorizations (authorization requirements) are specified implicitly

from the granted authorization, so the security requirements engineer needs to understand the permissions

actors want to grant together with the security concerns they have (the prohibitions they want to specify), and

model them with the help of authorizations relationships. For instance, the Student requires the Program

Coordinator not to produce Personal Data, since the label P for the operation produce is prohibited. Some

security needs are implicitly derived, when no authorized actor grants the permission. For instance, the

Program Coordinator is required not to disclose students Personal Data, since the program coordinator is not

the owner of such information and there is no authorization towards him granting the right to transmit (T), see

Figure 20.

The socio-technical security

modeling language

The STS method for security requirements engineering

27

We emphasize that the modeling process dictated by the STS method (Phases 1—3) is iterative. The views can be

further refined, depending on the level of detail that is needed. Therefore, in building the STS-ml model for our running

example we can continue modeling by following these steps:

 Further refine the Social View: actors might need to read or modify particular information, but they might not

have the documents that represent this information. Therefore, they might need to get this information from

other actors. Thus, the next step in the modeling process consists in representing information exchange.

Information exchange is captured by the document transmission relationship. This relationship models another

type of interaction among actors, so this activity is another iteration of step 1.2. A document can be transmitted

in STS-ml only by an actor that is in possession of that document. An actor is in possession of a document if it

produces the document or the document is within the actor’s rationale and there are no incoming document

transmissions towards him. In Figure 9, the IS Manager produces document Income Statement and transmits it

to the Secretary, which reads this document to achieve goal Obtain UTD statement. Refinement continues until

the designer considers that all the important interactions have been captured and all required security

requirements have been expressed.

 Refine the Information View: similarly to the previous identified information entities, the security requirements

engineer considers for each document what its informational content is. An information could be made tangible

by more documents, as well as the same document can make tangible more information entities. The designer

continues modeling until all the relevant information entities have been represented.

 Refine the Authorization View: for all the represented actors, consider whether there are permissions being

granted to them or whether they grant any permissions/specify any prohibitions to the interacting actors.

Termination criteria are established depending on whether all important interactions in terms of permission

flow have been captured and all the correct authorization security needs have been expressed.

Once the modeling is done and all security expectations have been expressed, the complete list of security requirements

can be derived.

STS-ml’s modeling and analysis abilities have been implemented in STS-Tool [6] (http://www.sts-tool.eu), to support

graphical modeling of socio-technical systems, automatic derivation of security requirements, requirements document

generation, as well as automated analysis. Therefore, Phases 4 and 5 are automated by STS-Tool [6].

 Phase 4. Automated Analysis: in this phase the STS-ml model built by the designer is analyzed through the

three types of analysis supported by STS-Tool, namely well-formedness analysis, security analysis, and threat

analysis. They focus on different aspects of the modeled socio-technical system, the provided steps are

presented in a suggested order, and however they can be executed by the security requirements engineer in any

order. Importantly, the results of the analysis can be used to improve the models, based on the feedback

provided by the tool by means of visualizations of analysis results (in terms of warnings and errors identified),

as indicated by the arrow going back from Phase 4 to the Modeling Activities (represented by Phases 1 – 3).

o Step 4.1. Well-formedness Analysis: the designer launches well-formedness analysis to verify the

correctness and validity of the STS-ml model under consideration. This analysis runs well-formedness

rules, to verify validity of STS models. These checks are performed a posteriori, not on the fly, as they are

computationally expensive and would slow down the modeling process if executed on the fly. Well-

formedness analysis returns results in terms of warnings and errors. Warnings can be ignored by the

security requirements engineer (though it is good practice to consider them), while errors must be

corrected. So, to verify whether the model for our running example is valid, we run the well-formedness

analysis, which found no errors (see Figure 23). This is comprehensible given that our running example is

necessarily a small illustrative scenario. However, in larger models, it is unavoidable that there are well-

formedness warnings or errors. The security requirements engineer is provided with details for all

findings, both graphically over the models and textually in terms of descriptions.

The socio-technical security

modeling language

The STS method for security requirements engineering

28

Figure 23: Well-formedness Analysis results for the running example

o Step 4.2: Security Analysis: verify (i) if there are any conflicting security requirements; (ii) if the diagram

allows the satisfaction of the specified security requirements (i.e., there are no conflicts between

stakeholders’ business policies and the security requirements they should bring about). This analysis is

implemented in disjunctive Datalog and consists of comparing the possible actor behaviors that the model

describes against the security requirements they should satisfy. The results are enumerated in a tabular

form below the diagram, and rendered visible on the diagram itself when selected (see Figure 24 and

Figure 25). A textual description provides details on the identified conflicts.

 We run the security analysis on our model to verify whether there are any conflicting security

requirements. The analysis identified an authorization conflict on authority to transmit for the

Secretary, as the IS Manager prohibits him the authority to transmit Financial Status and

Personal Data, while the Program Coordinator grants this right over the same information, and

in the scope of the same goal. Both these authorizations are highlighted and visualized as errors

by the analysis and details are provided in the Analysis tab (see Figure 24). The designer needs to

take into account the details on this finding and negotiate to resolve them. A possible way to

resolve this conflict is by revoking the authorization given that the Secretary does not need it (as

it can be seen from the social view).

Figure 24: Security Analysis results for the running example – authorization conflicts

The socio-technical security

modeling language

The STS method for security requirements engineering

29

 After resolving authorization conflicts, we ran the security analysis again to verify the

satisfaction of security needs (identify possible violations). The security analysis over

our running example identified that the non-disclosure security need is violated (see

Figure 25). These conflicts arise because of the different policies stakeholders have in

achieving their goals, and the security requirements imposed to them by others. In order

to resolve these conflicts, the security requirements engineer needs to find a trade-off

and negotiate with stakeholders in order to relax or change one of the requirements,

either the security requirement or the one from the actor’s business policy.

Figure 25: Security analysis results - non-disclosure

 step 4.3 Threat Analysis: Threat analysis focuses on events threatening goals or documents, to then

propagate the effects over goal trees and goal/document relationships internal to the actor (read, modify,

produce), as well as social relationships involving goals and documents (goal delegation and document

transmission). We ran threat analysis on our model to identify that the event threatening IS Manager’s

document Personal Data File threatens also Secretary having this document. As a consequence it

threatens secretary’s goal Get Student Pers. Data, and threatens his root goal Get Student Record, for

which Get Student Pers. Data is an and-subgoal (see Figure 26). Similarly, the threat is propagated in the

rest of the model. The details are provided in the Analysis tab below the model and the textual description

enumerates all elements of the path along which the threatening effect of the event is propagated.

Figure 26: Threat Analysis results for the running example

More details on the checks performed by each analysis are provided in Appendix.

The socio-technical security

modeling language

The STS method for security requirements engineering

30

 Phase 5. Derive Security Requirements: STS-Tool supports the automatic derivation of security requirements

in terms of commitments (see Figure 27). The security requirements are listed and they can be sorted according

to the various attributes. For instance, filtering the requirements with respect to the responsible actor, gives an

idea of who are the actors responsible (debtor making the commitment) to satisfy the security requirements

(commitments). On the other hand, filtering requirements according to their requirement type groups together

security requirements (commitments) that need to be satisfied to fulfill a certain security policy.

o Step 5.1. Generate security requirements document: the modeling process terminates with the generation

of a security requirements document, which supports the communication between the security

requirements engineer and stakeholders. This document is customizable by choosing among a number of

model features to include in the report (e.g., including only a subset of the actors, concepts or relations he

or she wants more information about). The diagrams are explained in detail providing textual and tabular

descriptions of the models (see Figure 28 for an excerpt of the security requirements document).

Figure 27: Security Requirements for the running example

Figure 28: Security Requirements Document for the running example

The socio-technical security

modeling language

Summary and discussion

31

5 Summary and discussion

Table 3 summarizes all the concepts that have been introduced throughout this document, together with their graphical

representation.

CONCEPT GRAPHICAL NOTATION EXPLANATION

Role

Agent

A role is an abstract characterization of an

actor (e.g., professor, student), while an agent

refers to a concrete actor (e.g., Marco, Laura).

Role/Agent scope

Possess

Want

The scope of a role (agent) defines the

strategic construction of the role(agent):

• The goals the role/agent wants to achieve;

• The documents the role/agent

possesses.

Play

An agent plays a role (e.g., Marco plays role

Student, Laura plays role Teacher).

Goal

Document

Information

A goal represents a desired state of affairs

(e.g.., car is bought, stay permit is given). A

document represents an exchangeable entity

(e.g., reference letter), which may contain

some information (e.g., personal data, salary).

Own

A role/agent is the legitimate owner of some

information and can freely dispose of it, as

well as decide to transfer rights about it to

others (e.g.., a student is the owner of her

personal data).

Transmit

A role/agent transmits a document that she

possesses to another role/agent. For example,

a student transmits his report to the professor.

Integrity of

transmission,

Availability,

Confidentiality of

transmission

Authentication

A role/agent requires integrity of transmission

from the role/agent providing the document.

The receiver requires a minimum level of

availability for Document is preserved by the

provider.

Sender/Receiver requires authentication of the

receiver/sender for getting/transmitting the

document.

Tangible by

An information entity is made tangible by a

document (e.g., the student’s personal data is

made tangible by a reference letter)

The socio-technical security

modeling language

Summary and discussion

32

Part Of

An information entity (a document) is part of

another information entity (another

document). The part of relationship applies

between homogeneous concepts. For example,

the “date of birth” information is part of the

“personal data” information. Also, the “letter

header” is part of the “recommendation

letter”.

AND-

decomposition

OR-decomposition

Decompositions enable the hierarchical

refinement of goals. There are two types of

decomposition:

AND-decomposition, where the achievement

of all the sub-goals implies the achievement of

the decomposed goal. For instance, goal

“reference letter written” may be AND-

decomposed to “letter written” and “letter

signed”.

OR-decomposition, where the achievement of

either sub-goal implies the achievement of the

parent goal. For example, goal “letter written”

can be OR-decomposed to “new letter

written” or “old letter copied”.

Read

A document is read in order to achieve a goal.

For example, document “letter template” is

read to achieve goal “old letter copied”.

Produce

A document is produced while achieving a

goal. For instance, document “reference letter”

is produced while achieving goal

“recommendation letter written”

Modify

The content of a document is modified while

achieving a goal. For instance, document

“health record” is modified while achieving

goal “update patient’s health record”.

Goal delegation

No-redelegation

Non-repudiation

Redundancy

Trustworthiness

Availability

Authentication

A goal delegation implies that a role/agent

(delegator) delegates the fulfillment of a goal

(delegatum) to another role/agent (delegatee).

In STS-ml, we support some variants of

delegation:

No-delegation: the delegatee cannot further

delegate the goal.

Non-repudiation: the delegatee cannot

repudiate that the delegation has taken place.

Redundancy: the delegatee shall adopt

measures so as to provide redundant

fulfillment of a goal.

Trustworthiness: the delegatee shall provide a

proof of trustworthiness, e.g., issued by a

certification authority.

Availability: the delegatee shall ensure a

minimum level of availability for the

delegated goal.

Authentication: the delegator/delegatee shall

authenticate for delegating/getting the goal.

The socio-technical security

modeling language

Summary and discussion

33

SoD

Role-based

Goal-based

Role-based BoD: defines bound roles.

Goal-based BoD: defines goals that have to be

achieved in combination.

Events

An event threatens actors (agents and roles),

goals, goal delegations and documents.

Authorisation

A role/agent authorizes another for certain

operations to be performed on one or more

information items, within the scope of a given

goal.

Operations are: Read (R), Modify (M),

Produce (P), and Transmit (T). For example,

reading could be allowed, while modification

could not be granted.

The scope is one or more goals. For example,

a role may be authorized to read “personal

data” in the scope of goal “recommendation

letter written”, but not in the scope of other

goals (e.g., “bank payment made”).

An authorization may deny transfer of

authority (second picture). The role/agent

receiving the authorization cannot re-transmit

(parts of) the authorization.

Table 3: Socio-technical security modeling language: summary

The socio-technical security

modeling language

References

34

6 References

[1] Elda Paja, Fabiano Dalpiaz, Paolo Giorgini (2013) Managing Security Requirements Conflicts in Socio-

Technical Systems. In Proceedings of the 32nd International Conference on Conceptual Modeling (ER 2013),

pp. 270-283, November 2013.

[2] Fabiano Dalpiaz, Elda Paja, Paolo Giorgini, Security Requirements Engineering via Commitments, In

proceedings of the First Workshop on Socio-Technical Aspects in Security and Trust (STAST'11), pp. 1-8,

September 2011.

[3] N. Zannone, “A Requirements Engineering Method for Trust, Security, and Privacy,”
Ph.D. dissertation, University of Trento, 2007.

[4] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “Modelling Security Requirements through
Ownership, Permission and Delegation,” in Proceedings of RE 2005. IEEE Computer
Society, 2005, pp. 167–176

[5] F. Dalpiaz, A. K. Chopra, P. Giorgini, and J. Mylopoulos, “Adaptation in Open Systems: Giving Interaction its
Rightful Place,” in Proceedings of ER 2010, ser. LNCS, vol. 6412. Springer, 2010, pp. 31–45

[6] M. P. Singh. Agent Communication Languages: Rethinking the Principles. IEEE Computer, 31(12):40–47,
December 1998

[7] M. P. Singh. An Ontology for Commitments in Multiagent Systems: Toward a Unification of Normative
Concepts. Artificial Intelligence and Law, 7(1):97–113, 1999

[8] E. Paja, F. Dalpiaz, M. Poggianella, P. Roberti, P. Giorgini (2012), STS-Tool: Using Commitments to Specify

Socio-Technical Security Requirements. In Proceedings of the 31
st

 International Conference on Conceptual

Modelling – Workshops (ER’12 Workshops). pp. 396-399.
[9] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, Tropos: An Agent-Oriented Software

Development Method. Autonomous Agents and Multi-Agents Systems, 8(3): 203-236, 2004.

[10] STS Tool User Guide http://www.sts-tool.eu/doc/UserGuide_STS_Tool_ver1.3.3_web.pdf
[11] Aniketos EU FP7 project, http://www.aniketos.eu/ - D1.2 First Aniketos architecture and requirements

specification
[12] L. Liu, E. Yu, and J. Mylopoulos. Security and privacy requirements analysis within a social setting. In Proc.

of RE 2003, pages 151–161, 2003.
[13] H. Mouratidis and P. Giorgini. Secure Tropos: A security-oriented extension of the tropos method.

International Journal of Software Engineering and Knowledge Engineering, 17(2):285–309, 2007.
[14] E. Bertino, S. Jajodia, and P. Samarati. A flexible authorisation mechanism for relational data management

systems. ACM Transactions on Information Systems, 17(2):101–140, 1999.
[15] M. E. Whitman and H. J. Mattord. Principles of Information Security. Course Technology Press, 4th edition,

2011.

The socio-technical security

modeling language

Appendix: Automated analyses supported by STS-Tool

35

Appendix: Automated analyses supported by STS-Tool

A. Well-formedness Analysis

The purpose of well-formedness analysis is to verify whether the diagram built by the designer is consistent and valid.

A diagram is considered to be well-formed if its constituent elements (concepts and relationships) are drawn and

interconnected following the semantics of the modeling language (STS-ml). Thus, well-formedness analysis performs

post checks to verify compliance with STS-ml semantics for all checks that cannot be performed live over the models.

Currently, the following checks are performed:

 Empty Diagram
This check verifies whether the given diagram is empty or not. If that is the case, then no other well-

formedness checks are performed. If the diagram is not empty, the well-formedness analysis returns: “No

errors found” and continues performing the rest of the checks.

 Goal Single Decomposition
This check verifies the consistency of goal decompositions. Following the semantics of STS-ml a given goal is

decomposed in two or more sub goals. As a result, the decomposition should specify at least two subgoals.

Therefore, goal single decomposition verifies whether there are cases of decompositions to a single sub goal.

 Delegation Child Cycle
This check verifies the well-formedness of goal delegations, so that no cycles or loops are identified as a result

of the delegatee decomposing the delegatum (delegated goal) and re delegating back one of the subgoals.

Delegation child cycle verifies exactly this and gives a warning in case of inconsistency.

 Information No Ownership

This check verifies that all information have an owner. If there are cases of information without any ownership

relationships from any actor in the diagram, the well-formedness analysis returns a warning.

 Authorizations Validity
This check verifies that all authorization relationship between two given actors are valid. An authorization

relationship specifies authorizations or permissions an actor grants to another on some information, to perform

some allowed operations. The authorizations could be limited to a goal scope and they can be re-delegated or

not. However, the first two attributes should be specified for an authorization relationship to be valid. If there

are no information specified, the well-formedness analysis returns an error. The same applies to the cases, in

which no allowed operations are specified.

 Duplicate Authorizations
This check verifies that there are no duplicate authorization relationships that could be merged. There are

several cases that are addressed by this check: (i) we encounter two identical authorization, i.e., between the

same roles, in the same direction, for the same set of information, allowed operations and goals, and having the

same value of transferability; (ii) identify authorization relationships between the same roles, in the same

direction, in which one grants permissions that are subset of the other authorization’s relationship.

B. Security Analysis

STS-ml allows for the specification of security needs over actors’ interactions. It currently supports a non-exhaustive set

of security needs and organizational constraints, namely non-repudiation, redundancy, no-redelegation, non-reading,

non-modification, non-production, non-disclosure and need-to-know. The purpose of security analysis is to verify

whether the drawn diagram allows the satisfaction of the specified security needs or not. As a result, for all security

needs expressed by stakeholders, it checks in the model whether there is any possibility for the security need to be

violated. This analysis takes into account the semantics of STS-ml, defining the behavior of the different elements

represented in the models. The elements’ behavior is defined by propagation rules that consider what concepts and what

relationships the specification of a given security need affects. Datalog is used to define the semantics of STS-ml to

The socio-technical security

modeling language

Appendix: Automated analyses supported by STS-Tool

36

express facts (things always hold) and rules. In the following are provided the details for all the checks performed

during security analysis:

 No-redelegation Violation

This violation is verified whenever a delegatee actor further delegates a goal, over the delegation of which a

no-delegation security need is specified from the delegator actor. No delegation is specified over a goal

delegation by the delegator, who requires the delegatee not to further delegate the delegated goal. Therefore, to

check for any violations of no delegation, the analysis searches for redelegations of the delegatum (delegated

goal) or any of its subgoals.

 Redundancy Violation
This check verifies if redundancy is satisfied by controlling that single-actor-redundancy or multi-actor-

redundancy are not violated. At design time we cannot make the distinction between fallback and true

redundancy, so they cannot be verified at this stage. Therefore, both fallback redundancy single and true

redundancy single are mapped to single actor redundancy.
Similarly for multi-actor-redundancy; the analysis verifies a redundancy violation if one of the following

occurs: (1) actor does not decompose the delegated goal in any or-subgoals, for which both types of

redundancy are violated; (2) actor decomposes the goal into or-subgoals and delegates one to another actor

when single actor redundancy has been specified, for which this type of redundancy is violated; (3) actor

decomposes the goal into or-subgoals, but does not delegate any of the subgoals to another actor when multi

actor redundancy has been specified, for which this type of redundancy is violated.

 Pre-Analysis: Authorization Conflict

 This task includes a set of checks that are run to verify that no conflicting authorizations are passed towards a

given actor.

o Authorization Conflict: This task identifies a conflict of authorization whenever at least two authorization

relationships for the same information are drawn towards the same actor from two illegible actors (being

the owner of information or another authorized actor) such that: (1) one limits the authorization to a goal

scope (requiring a need-to-know security need) and the other does not (authorizing the actor without any

limitations); (2) for the same goals or intersecting goal scopes, different permissions are granted in terms

of operations or authority to transfer authorization. That is, one passes the actor the authority to perform

operations (read, modify, produce, transmit) on a given information, and the other does not (requiring

non-reading, non-modification, non-production, non-transmission); one passes the actor the authority to

further transfer authorizations and the other requires no further authorizations take place.

 Pre-Analysis: Operation Violation
This task includes a set of checks that verify that no unauthorized operations are performed by any actor.
o Non-disclosure Violation: this violation is detected whenever an actor discloses information without

having the right to transmit it. Non-disclosure expresses the need of not disclosing or further transmitting

the given information to other actors, apart from the authorizer. Thus, authority to transmit the

information is not passed. The way actors exchange information is through document transmission. In

order to disclose some information, an actor would have to transmit to others the document(s) containing

that information. Hence, to verify if there are any unauthorized disclosures of information, the analysis

checks for transmissions of documents representing the given information from any unauthorized actors

towards other actors.

o Non-reading Violation: This violation is detected whenever there is an inappropriate modeling of the

reading relationship. Transmission should encapsulate reading too. A carrier serving as a transmission

point needs to have only transmission permissions, not necessarily any about reading what is being

transferred.

o Non-modification Violation: this violation is detected whenever an actor modifies information without

having the right to modify it. Non-modification expresses the need that information should not be

changed (modified), i.e. authority to modify the information is not granted. To verify if there could be any

violations of non-modification, the analysis looks if the authorisee (or an actor that is not authorized by

authorized party) modifies the given information. For this, it searches for modify relationships from any

goal of this actor to any document representing the given information.

The socio-technical security

modeling language

Appendix: Automated analyses supported by STS-Tool

37

o Non-production Violation: this violation is detected whenever an actor produces information without

having the right to produce it. Non-production expresses the need that information should not be

produced in any form, i.e. authority to produce the information is not granted. To verify if there could be

any violations of non-production, the analysis checks whether if the authorisee (or an actor that is not

authorized by authorized party) produces the given information. For this, it searches for produce

relationships from any goal of this actor to any document representing the given information.

o NTK Violation: this violation is detected whenever an actor reads, modifies or produces information for

other purposes (goal achievement) than the ones for which it is authorized. Need-to-know requires that

the information is used, modified, or produced in the scope of the goals specified in the authorization.

This security need concerns confidential information, which should not be utilized for any other purposes

other than the intended ones. To verify if there could be any violations of need-to-know, security analysis

checks if the authorizee (or an actor that is not authorized by any authorized party) reads, modifies or

produces the given information while achieving some goal different from the one it is authorized for. In a

nutshell, it searches for need, modify, or produce relationships starting from goals different from the

specified ones towards documents representing the given information.

Apart from the verification of violations of security needs, security analysis performs checks to verify that actors

comply with their authorities. For this, it searches for eventual unauthorized passages of rights. For the time being, the

following violations are detected:

 Pre-Analysis: Authority Violation
This task includes a set of checks that verify that no actor transfers rights to others in an unauthorized way.

o Authority Violations: verifies whether a given actor transfer rights to others even when it does not have

the authority to further delegate rights.

o Unauthorized Delegation of Reading Violation: verifies whether a given actors transfer to other actors the

right to read a given information, without having itself the right to do so.

o Unauthorized Delegation of Modification violation: verifies whether a given actors transfer to other actors

the right to modify a given information, without having itself the right to do so.

o Unauthorized Delegation of Production violation: verifies whether a given actors transfer to other actors

the right to modify a given information, without having itself the right to do so.

o Unauthorized Delegation of Transmission violation: verifies whether a given actors transfer to other

actors the right to transmit a given information, without having itself the right to do so.

 Pre-Analysis: Business Violation

This task includes a set of checks that verify that there are no violations of organizational constraints. As far as

organizational constraints are concerned, security analysis verifies that the specification of SoD and BoD

constraints can be satisfied in the given model.

o Sod Violation:

 Role-based: this violation is detected whenever a single actor plays both roles, among which an SoD

constraint is expressed. Role-based SoD requires that no agent can play both roles, if it plays one of

them.

 Goal-based: this violation is detected whenever a single actor may perform both goals, between which

an SoD constraint is expressed. Goal-based SoD requires that there is no actor performing both goals

among which SoD is specified. To perform this verification, the analysis checks that the final

performer of the given goals is not the same actor.

o BoD Violation:

 Role-based: this violation is detected whenever there is no agent to play both roles, among which a

BoD constraint is expressed. Role-based BoD requires that the same agent plays both roles, if it plays

one of them.

 Goal-based: this violation is detected whenever a single actor may perform both goals, between which

an Sod constraint is expressed. Goal-based SoD requires that there is no actor performing both goals

among which SoD is specified. To perform this verification, the analysis checks that the final

performer of the given goals is not the same actor.

The socio-technical security

modeling language

Appendix: Automated analyses supported by STS-Tool

38

C. Threat Analysis: threat propagation

Threat analysis focuses on events threatening goals or documents, and as such it propagates the effects over goal trees

and goal/document relationships internal to the actor (read, modify, produce), as well as social relationships involving

goals and documents (goal delegation, document transmission). Therefore, starting from the specified threats we

identify the impact of these threats over the rest of the diagram. The analysis starts with the known events and

propagates their impact over goal trees, documents and social relationships. The newly-discovered elements are treated

as threatened elements. The analysis ends when no new elements are found.

The propagation rules are the following:

 If an event threatens a goal, then:

o If the goal is an AND-subgoal of some other goal, then the second goal is considered to be threatened;

o If the goal is delegated, then the threat is propagated to the goal of the delegator;

o If the goal produces a document, then the threat is propagated to the document too.

 If an event threatens a document, then:

o If the document needs to be read or modified by some goal, then the goal is considered to be threatened

too;

o If the document is transmitted to some other actor, then the receiver’s document is threatened too;

o If the document is composed of other documents, then the threat is propagated to the parts of the

document.

