
From Secure Business Process Models
to Secure Artifact-Centric Specifications

Mattia Salnitri1, Achim D. Brucker2, and Paolo Giorgini1

1 University of Trento, Trento, Italy
{mattia.salnitri, paolo.giorgini}@unitn.it

2 SAP SE, Karlsruhe, Germany
achim.brucker@sap.com

Abstract. Making today’s systems secure is an extremely difficult and challeng-
ing problem. Socio and technical issues interplay and contribute in creating vul-
nerabilities that cannot be easily prevented without a comprehensive engineering
method. This paper presents a novel approach to support process-aware secure
systems modeling and automated generation of secure artifact-centric implemen-
tations. It combines social and technical perspectives in developing secure sys-
tems. This work is the result of an academic and industrial collaboration, where
SecBPMN2, a research prototype, has been integrated with SAP River, an indus-
trial artifact-centric language.

1 Introduction

Today’s systems are more and more similar to complex organizations, where au-
tonomous and independent components interact one another to achieve common and
local objectives. An air traffic management system is, for instance, composed of sev-
eral autonomous elements, such as the communication service provider network, the
tower control, the meteorological services provider, the Very High Frequency (VHF)
network, the ground management system, and so forth. Some of them can be consid-
ered as pure technical components (e.g., satellite communication network or the aircraft
router) while others are human/social elements (e.g., the controllers in the control tower,
or airport rescue team). In other words, socio and technical elements are components of
the same Socio-Technical System (STS) where they interact as autonomous elements.

STSs can easily become complex and hard to control systems, where human fac-
tors may introduce an high level of unpredictability. To regulate the system’s interac-
tions, process modeling languages are commonly used to design the flow of activities
and to prescribe roles and responsibilities. Business Process Management and Notation
(BPMN) 2.0 [1] and Business Process Execution Language (BPEL) [2] are well known
examples of process-centric modeling languages. The design of a STS cannot leave
out, however, the artifacts (entities, data and documents) that are used, consumed and
shared within the system. SAP River [3] and Oracle PeopleCode [4] are largely used
artifact-centric approaches to model business artifacts and their business logic.

In STS, security is not exclusively a technical problem, very often it is the combina-
tion of socio and technical factors that gives origin to the most critical vulnerabilities of

mailto:achim.brucker@sap.com


a system [5]. To guarantee desirable levels of security, artifact-centric approaches offer,
for example, access control and authentication security controls to constraint the access
to the data and related executable functions (business logic) [6]. However, the security
strategies that are beyond the usage of such security controls, should be consistent with
the security choices adopted in the business process model; namely, any security strat-
egy adopted for the STS should be first implemented into the business process and then,
as consequence, coded at level of artifacts. For example, in a payment engine (e.g., SAP
Payment Engine [7]), security choices of creating a process that maintains the integrity
of the invoice or ensuring the confidentiality of the credit card information, should be
enforced on related business artifacts (e.g., implementing authentication controls for
accessing the credit card data).

The literature offers a number of process-centric languages for modeling security
concerns along the activities’ flow of a system. SecBPMN [8] and SecureBPMN [9]
are two examples of modeling languages where specific annotations are introduced to
extend BPMN with security concepts. However, no approach has been proposed so far
to handle with security as a global concern across process-centric and artifact-centric
dimensions. For example, SAP proposes SAP River [10] and ABAP [11] as artifact-
centric languages without any related support for modeling security at process level.

In this paper, we present an approach to deal with security that combines the ad-
vantages of business process modeling with the advantages of artifact development. We
implemented our approach using SecBPMN2 [12] as a process-centric modeling lan-
guage to define the business processes and the security choices and SAP River platform
for the artifact-based implementation. The overall approach guarantees that the artifact-
based implementation complies to the high-level security-aware process specification.

In more detail, our contributions are three-fold: first, we present an integrated ap-
proach for modeling and implementing secure process-aware socio-technical systems.
Second, we present a mapping from control-flow-centric business process models to
artifact-centric implementations that include the translation of security and compliance
properties. And, third, we implemented our approach on an industrial platform.

2 Baseline

In this section, we introduce the foundations of our work: the security aware, process-
centric modeling language SecBPMN2 and the artifact-centric framework SAP River.

2.1 SecBPMN2

Among various process-centric modeling languages, SecBPMN2 stands out for its ex-
pressiveness, and the possibility to model both business processes and security poli-
cies. It is composed of SecBPMN2 - modelling language (SecBPMN2-ml), a model-
ing language that extends BPMN 2.0with security concepts, and SecBPMN2-Query
(SecBPMN2-Q), a modeling language for security policies. Fig. 1 shows an example of
SecBPMN2 concerning the SAP Payment Engine (PE). SAP Payment Engine [7] is a
flexible single-payment platform aimed for processing payments into one central hub.
It can be used as a single entry point where the company orders/receives payments. It



Fig. 1. Example of SecBPMN2-ml model

interacts with any bank it is required to be connected using the proper interface and
security level required by the bank. The process in Fig. 1 starts when a money transfer
is executed between two banks.

SecBPMN2 extends BPMN 2.0 adding security choices, represented as eleven secu-
rity annotations: accountability, auditability, authenticity, availability, integrity, privacy,
binding of duties, non-delegation, non-repudiation, separation of duties, and confiden-
tiality. In Fig. 1, we have: non-repudiation, linked with “Authorize transaction”, spec-
ifies that “Bank src” cannot be able to deny the execution of that task; separation of
duties specifies that “Bank src” and “Bank dst” cannot be the same bank; confiden-
tiality, linked to the message flow that transmits the “CC info”, specifies that only the
authorized receivers can read the message. More details can be found in [12].

2.2 Artifact-Centric Business Process Modeling

Well known business-process or workflow modeling languages such as BPMN 2.0 or
BPEL are based on activity flows: data that is processed within the processes is often
an afterthought. In contrast, artifact-centric business process modeling [10,13] puts the
business artifacts (e.g., data, documents) into the center of the process modeling.



1 @OData
2 type LocalDate { date : UTCTimeStamp; state: S t r i n g; }
3 a p p l i c a t i o n PizzaCloud.SalesApp {
4 r o l e Approver;
5 export e n t i t y SalesOrder a c c e s s i b l e by Approver {
6 key element ID : S t r i n g;
7 e lement transactionDate : LocalDate;
8 e lement items : association[0..*] to SalesOrderItems via backlink order;
9 a c t i o n approveOrder() { [..] } } }

Listing 1. A Simple River Example: Modeling a Sales Order

Fig. 2. The SAP River Platform

For our prototype, we use the SAP River, a
framework for developing business applications on
top of the SAP HANA. Fig. 2 shows an high-level
overview of SAP River: SAP HANA provides the
persistency layer as well as the container in which
the enterprise applications are executed. Clients as
well as back end systems or external services can
communicate with the River platform using stan-
dard protocols. The business artifacts (i.e., the data
model) and their behavior (i.e., the business logic)

as well as the access control are specified in the River Definition Language (RDL) [3].
RDL is an executable specification language that allows to specify declaratively

the artifacts (e.g., entities), the relations between them (e.g., associations) as well as
the business logic (e.g., actions) on the artifacts. Lst. 1 illustrates an excerpt of a
SAP River application. Most importantly, RDL allows for specifying entities (e.g.,
SalesOrder, their attributes (e.g., transactionDate), custom types of the at-
tributes (e.g., LocalDate), and the relation (associations) to other entities. For exam-
ple, the entity SalesOrder as a bidirectional association (similar to associations in
UML [14]) to the entity SaledOrderItems. Besides this pure data modeling, RDL
also supports to specify the actions (e.g., approveOrder in a declarative style. Fi-
nally, RDL supports to specify role-based access control restrictions: the actions of the
entity SalesOrder are only accessible by members of the role Approver.

By default, artifacts in RDL are private. To enable access outside of their scope, they
need to explicitly marked with the export keyword. Moreover, the annotation @OData
enables remote access using the OData protocol (www.odata.org). Such a remote
access is controlled by the same access control restrictions of internal access.

3 From Procedural Specification to Business Artifact Specification

Fig. 3 provides an overview of our approach: Step 1 consists in defining the procedu-
ral specification, where a team composed of domain experts (i.e., the customers and
consultants) and security engineers work together to express security needs over the
activities’ flow of the system. The procedural model is then used to automatically gen-
erate a set of River application skeletons (step 2) that will be used by developers to
implement the business logic (step 3). Whenever the system changes (e.g., to adapt to

www.odata.org


Fig. 3. The process proposed with the approach

new organizational processes or new legislations), a revised version of the SecBPMN2
processes or new specifications for the artifacts can be introduced. Compliance between
SecBPMN2 models and artifact specifications has to be checked again and new changes
on the process models or artifact specifications are introduced (step 4).

The generation of River applications skeleton from SecBPMN2 models requires
extra information that are specific of business artifacts and that are not represented in
the process models. Particularly, SecBPMN2 data objects are complex data structure
with heterogeneous data types in River; for instance, in the procedural specification in
Fig. 1, the credit card data object is specified only by its name, while in River it will be
specified as complex business artifact with information such as the number of the credit
card, Card Verification Value (CVV), name of the owner, or the issue date. Companies
such as SAP or Oracle have created repositories of templates, that can be reused when-
ever the same business artifacts are requested. Our approach includes such repositories,
so to support the generation of River applications that already incorporate a complete
definition of business artifacts and therefore to reduce the amount of work required to
River developers to customize the River application once generated. Developers will,
then, complete the specification of the business artifacts and their business logic with
domain dependent details. For example, in PE, the business logic related to the credit
card strictly depends on the context in which the system applies.

Moreover, since River applications can enforce only SecBPMN2 security choices
regarding information handled in the process, they cannot be the only enforcement point
for all security choices defined in the procedural specification. We include, as an output
of the approach, a “security specification” document which contains a list of the security
controls that cannot be implemented in River applications.

Fig. 4 shows the mapping relations between part of SecBPMN2 and River meta-
models. The six mapping relations are described below.
Stored as “Data object”, which represents a set of information, is “stored as” a River
“Type”, which represents the structure of the information of an element in entity.
Transmitted as “Message”, that represents a set of information sent between pools, is
“transmitted as” a River “Type”, which represents the structure of a message sent.
Embodied by “Pool”, which defines a company or an actor such as a buyer or a manu-
facturer, is “embodied by” an “Application”, that represents a set of business artifacts,



Fig. 4. Part of meta-models of SecBPMN2 and River and the mapping relations

which can be accessed only using the APIs, and their business logic. From an artifact-
centric perspective, a pool and a River application are use to identify organizations or a
well defined parts of them.
Executed as A “Task” represents an operation performed by a participant. “Action” rep-
resents the business logic linked to a data structure, i.e., they are the operations executed
to set/maintain some properties of the business objects. The operations represented by
a task are implemented and executed in a River action.
Played by A “Lane” represents a participant, i.e., a person, a service or a set of them.
A“Role” represents a set of authorizations assigned to a (set of) physical entity(ies),
i.e., the it represents any entity that can receive an authorization. A lane is “played by”
a River role because any entity represented by a role can perform all the actions required
by the tasks in the lane.
Started as A “Sub-process” is a task that encapsulates a business process, which con-
tains a whole new set of SecBPMN2 elements. Similarly a “Call” is a reference to
another River application, which, in turn, contains a whole set of business artifacts. A
sub-process is “started as” a call because a call starts a new River application.

The creation of River skeletons is based on generation rules that follow the mapping
relations defined in Fig. 4. Events and gateways elements are, however, not part of the
model transformation since they are used to define the control flow. The main generation
rule specifies that a River entity and a River type are generated for each data object and
for each message in the SecBPMN2 model. Each entity contains one element of the type
generated together with the entity. Each task linked to the data object is transformed in
an action, that is placed in an ad-hoc namespace, created for the data object (see Sec. 5).

Fig. 5 shows an example of generation. The name of the application reflects the
name of the pool and two roles, which correspond to the lanes in the business process,
are specified. From the data object “VCNUM” are generated: (i) a type “VCNUM”
that contains the structure of the data that makes tangible the information; (ii) an entity
”VCNUMEntity” that contains the actual information; (iii) a namescape “VCNUM-
namespace” that contains all the actions derived from the SecBPMN2 tasks linked to the



1 a p p l i c a t i o n paymentEngine
2 {
3 r o l e controller;
4 r o l e validator;
5 type VCNUM {
6 element ClientIDs : I n t e g e r;
7 element PaymentCardType : S t r i n g;
8 element CardNumber : S t r i n g;
9 [..]}

10 export e n t i t y VCNUMEntity {
11 key element id: I n t e g e r;
12 element VCNUMData: VCNUMType; }
13 export namespace VCNUMnamespace a c c e s s i b l e by sap.hana.All {
14 export a c t i o n ValidateCreditCard() {}
15 export a c t i o n FilterSensitiveInformation() {} } }

Fig. 5. A SecBPMN2 model representing part of a PE business process

“VCNUM” data object. The structure of “VCNUM” is retrieved from the SAP reposi-
tory, indeed “VCNUM” is a template for the information related to credit cards.

The fourth step of process described in Fig. 3 consists in checking if the security
requirements are satisfied in SecBPMN2 models and River applications. The former
control can be performed using SecBPMN2 verification engine, while the latter may be
perform using software verification techniques.

4 Security Enforcement Rules

In this section, we present a set of rules that are used to enforce the security choices of
SecBPMN2 into River applications. Tab. 1 shows SecBPMN2 security annotations. To
simplify, security annotations shown in the table are linked to all elements they can be
linked to; however, SecBPMN2 allows for only one link (except for separation of du-
ties and binding of duties, that can be linked to two pools). In this paper we report only
the enforcement rules for process and collaboration models, while details about chore-
ographies can be found in [12]. For each SecBPMN2 security annotation, we briefly
describe in the following its meaning and the corresponding Enforcement Rule (ER).

ER1: Integrity. It requires a system to ensure completeness, accuracy and absence of
unauthorized modifications in all its components [8]. It can be linked to one task, data
object or message flow (Tab. 1-a). Although, it can be partially enforced by filtering the
users who can access the River entities (i.e. using authentication and access control),
backup mechanisms should be used to avoid loosing potentially precious information
(when linked to a data object), or loosing functionalities offered by the system (when
linked to the message flow or to an activity). Since, such configurations cannot be spec-
ified in a River application, they are enlisted in the security specification document.

ER2: Authenticity. It is defined as the ability of a system to verify identity and to
establish trust in a third party and in information it provides [8]. It can be connected to
one task or data object (Tab. 1-b). When it is linked to #Task, it can be enforced with an
authenticity security control that verifies the identities of users who execute the action
generated from #Task. When it is linked to #DO, an element which contains the hash of
the type generated from the #DO will be included in the type itself.



Table 1. SecBPMN2 security annotations

(a) Integrity (b) Authenticity (c) Accountability (d) Non-repudiation

(e) Auditability (f) Confidentiality (g) Privacy (h) Binding of duties

(i) Separation of duties (j) Availability (k) Non-delegation

ER3: Accountability. It is defined as the ability of a system to hold users responsible
for their actions (e.g., misuse of information) [8]. It can be linked to a task, as shown
in Tab. 1-c. It is enforced using the signature security control, which stores the private
key of the user who performs the action generated from to #Task. We used private key
to unequivocally identify users that performed the action.

Lst. 2 shows part of the River template used to generate the River code for the
signature security control. A River template is a piece of River application with place-
holders, marked with a “#”, that are substituted with an appropriate string. For example,
in Lst. 2, #Pool will be substituted with the name of the pool in SecBPMN2. The entity
in lines 2–4 contains the private keys associated to the users, while the entity defined in
lines 5–8 stores the link to the signature of the user who executed the action, the date
in which the action is performed and the link to the entity that contains the action per-
formed. Lines 10–15 show how the signature security control is implemented in each
action generated from #Task: a new entry is inserted in the entity “SignatureLogs”.

ER4: Non-repudiation. It is defined as the ability of a system to prove (with legal
validity) occurrence/non-occurrence of an event or participation/non-participation of a
party in an event [8]. It can be connected to one activity or one message flow (Tab. 1-d).
We use the signature security control to enforce the non-repudiation security choice. If
the security annotation is linked to a message flow, every time send and receive actions
are executed, the information about the execution is inserted in the signature entity.
If the security annotation is linked to #Task, the information is inserted whenever the
action, generated from #Task, is executed.



1 a p p l i c a t i o n #Pool {
2 e n t i t y repositorySignatures {
3 signature : S t r i n g;
4 user : S t r i n g; }
5 export e n t i t y SignatureLogs {
6 element signature: Association to repositorySignatures;
7 element date: UTCTimestamp;
8 element #DO : Association to #DO; }
9 export namespace #DOnamespace a c c e s s i b l e by sap.hana.All {

10 export a c t i o n #Task() {
11 l e t newSignatureLogs : SignatureLogs = SignatureLogs{
12 date : sap.hana.utils.dateTime.currentUTCTimestamp(),
13 signature : SELECT ONE repositorySignatures FROM repositorySignatures
14 WHERE user = sap.hana.services.session.getUserName(), #DO : this };
15 Add newSignatureLogs to SignatureLogs; } } }

Listing 2. Enforcement of accountability, implementing signature security control

1 a p p l i c a t i o n #Pool {
2 type ActionType : enum { READ; WRITTEN; SENT; RECEIVED; }
3 export e n t i t y ActionLogs#DO {
4 e lement date: UTCTimestamp;
5 e lement actionType : ActionType;
6 e lement user : S t r i n g; } [..]
7 export namespace #DOnamespace a c c e s s i b l e by sap.hana.All {
8 export a c t i o n get#DO(idEntity: I n t e g e r) : #Pool.#DOType { [..]
9 l e t log:ActionLogs#DO = ActionLogs#DO{

10 user : sap.hana.services.session.getUserName(),
11 actionType : ActionType.READ,
12 date : sap.hana.utils.dateTime.currentUTCTimestamp() };
13 log.save(); }
14 export a c t i o n #Task() { [..] } } }

Listing 3. Enforcement of auditability, implementing logging security control

ER5: Auditability. It is defined as the ability of a system to conduct persistent, non-
by-passable monitoring of all actions performed by humans or machines within the
system [8]. It can be linked to one task, data object or message flow (Tab. 1-e). It is
enforced with the logging security control, which stores information of the actions per-
formed. If the security annotation is linked to #DO, all actions in the entity that contains
the type generated from #DO are logged; if it is linked to #Task, only the calls to the
action that is generated from #Task are stored; if it is linked to a message flow only the
actions send/receive, generated from the message flow, are stored.

Lst. 3 shows part of the River template for the logging security control. The type
“ActionType” (line 2) defines the type of actions. The entity in lines 3–6 contains: type
of the action, date of execution and user who performed the action. Lines 9–13 show
how the information about the execution of an action is stored in the entity action-
Log#DO. If the security annotation is linked to #DO, information about the execution
is inserted in actionLog#DO every time an action, defined in an entity that contains
the type generated from #DO, is performed; if the security annotation is linked to #Task
then the information is stored every time the action, generated from #Task, is performed;
if the security annotation is linked to the message flow, then the information is stored
every time the send and receive actions, generated from the message flow, are executed.



1 a p p l i c a t i o n #Pool {
2 type #DO {[..]}
3 export e n t i t y #DOEntity {
4 [..]
5 a c t i o n encrypt(data :#DO): #DO { [ENCRYPTION ALGORITHM] }
6 a c t i o n decrypt(data :#DO): #DO { [DECRYPT ALGORITHM] } }
7 export namespace #DOnamespace a c c e s s i b l e by sap.hana.All {
8 export a c t i o n get#DO(idEnt: I n t e g e r) : #DOEntity {
9 l e t #DOInst: #DOEntity = SELECT * FROM #DOEntity WHERE id == idEnt;

10 #DOInst.#DOData = #DOInst.decrypt(#DOInst.#DOData);
11 re turn #DOInst.#DOData; } } }

Listing 4. Enforcement of confidentiality, implementing encryption security control

ER6: Confidentiality. It requires a system to ensure that only authorized users access
information [8]. It is a security annotation that is linked to one message flow or one data
object (Tab. 1-f). We enforced it using authentication, access control and implementing
encryption security control.

Lst. 4 shows part of the River template for the encryption security control. In lines
5 and 6 the encryption and decryption functions are defined. For the sake of brevity,
the algorithms used to encrypt and decrypt data are not shown. Lines 8–11 show how
the functions are used to enforce confidentiality: the content of the entity/message is
decrypted when retrieved/received and encrypted when is stored/sent. Therefore, the
content of entity/message will be visible only in the River application. The encryp-
tion/decryption functions are inserted in the send/receive actions when the security an-
notation is linked to a message flow, while are inserted in getters and setters of the entity
which contains the type generated from #DO.

ER7: Privacy. It requires a system to obey privacy legislation and it should enable indi-
viduals to control, where feasible, their personal information (user-involvement) [8]. It
is linked to one message flow or one data object (Tab. 1-g). With authentication and ac-
cess control, we restrict the access to authorized users. We further enforce it, encrypting
the content of the entity that contains the type generated from #DO (when the security
annotation is connected to #DO), or encrypting the entities sent and received (when the
security annotation is linked to a message flow).

ER8: Binding of duties. It requires the same person to be responsible for the com-
pletion of a set of tasks [15]. It is linked to two pools (Tab. 1-h). It is enforced using
authentication and access-control, ad-hoc security controls. Lst. 5 shows the template
for the enforcement of binding of duties. Element “BoDUser” in line 3 contains the first
user who accesses the entity and, therefore, the only one that is authorized to access the
entity(s) contained in the River applications generated from #Pool and #Pool2. In lines
4–14 the function “CheckBoD” is defined: it checks if the variable “BoDUser” is set
locally and in the application generated from #Pool2. If the variable is not set, it sets the
variable both local and remotely, otherwise it checks if the user who is executing the
action in which the “CheckBoD” method is called, is the same as the one memorized
in the variable. The “CheckBoD” method will be called in any action of the entities
contained in the applications generated from #Pool and #Pool2 (lines 16–19).



1 a p p l i c a t i o n #Pool{ [..]
2 export e n t i t y #DOEntity {
3 element BoDUser : S t r i n g;
4 a c t i o n checkBoD(): Boolean {
5 i f (BodUser i s n u l l && getBodUser(’#poolURL’,id) i s n u l l) {
6 BodUser = sap.hana.services.session.getUserName();
7 setBodUser(’#poolURL’, id, sap.hana.services.session.getUserName());
8 re turn true; }
9 e l s e

10 i f (BodUser == sap.hana.services.session.getUserName() &&
11 getBodUser(’#poolURL’,id) == sap.hana.services.session.getUserName())
12 re turn f a l s e;
13 e l s e
14 re turn true; } }
15 export namespace #DOnamespace a c c e s s i b l e by sap.hana.All {
16 export a c t i o n get#DO(idEnt: I n t e g e r) : #DOEntity {
17 l e t #DOInst: #DOEntity = SELECT * FROM #DOEntity WHERE id == idEnt;
18 i f (!#DOInst.checkBoD()) re turn n u l l;
19 re turn #DOInst.#DOData; }
20 export a c t i o n setBoDUser(urlPool: Str ing , idEnt: Str ing , BodUser: S t r i n g){[..]}
21 export a c t i o n getBoDUser(urlPool: Str ing , idEnt: S t r i n g): S t r i n g{[..]} } }

Listing 5. Implementation of dynamic binding of duties

ER9: Separation of duties. It requires two or more different people to be responsible
for the completion of a set of tasks [16]. It is linked to two pools (Tab. 1-i). Static sepa-
ration of duties [17] is enforced using authentication and access control, while dynamic
separation of duties [17] is enforced with authentication, access control and ad-hoc se-
curity controls. The template for enforcing dynamic separation of duty is similar to the
one for binding of duty (Lst. 5).

ER10: Availability. It requires a system to ensure that all its components are avail-
able and operational when they are required by authorized users [8]. Tab. 1-j shows
its graphical representation. It cannot be enforced in a River application because it re-
quires configuration of the system (e.g., the configuration of the data-base management
system), so the specification of using backup mechanism for #DO will be added to the
security specification document.

ER11: Non-delegation. It requires the system to ensure that the actions are performed
only by indicated actor(s). It can be linked to one task (Tab. 1-k). It is enforced using
access control: when #Task is transformed in an action in River, it is executed by the
roles authorized to access the tenancy/server where the River application is deployed.
Once the action is implemented, it will not be anymore delegated to a third party.

5 Implementation and Evaluation

5.1 Prototypical Implementation

Our prototype (available from [12]) tool takes as inputs an XML specification of the
SecBPMN2 model, a repository of business artifact definitions and, optionally, a set of
enforcement rules. Using the generation rules described earlier, the prototype generates
the River skeletons form templates using Freemarker (http://freemarker.org):
a Java template library.

http://freemarker.org


Alg. 1 shows the generation of the River skeletons. It follows the generation and en-
forcement rules described in Sec. 3 and 4. It uses the function GENERATE that retrieves
the Freemarker templates and instantiate them using the information contained in the
SecBPMN2 model. For each pool of the SecBPMN2 model (line 1), the algorithm cre-
ates a new River application (line 2) and it adds, to the application generated, all roles
generated from all lanes contained in the pool (lines 3–5). For each data object, it cre-
ates a River type, entity and namespace, and add them to the application (lines 6–10).
After that, for each task in the pool, it generates the corresponding action and adds it
to the entity(ies) that is(are) generated from the data object that is linked to the task
(lines 11–16). The RETRIEVE function checks for this link. If no data object is linked
the task, the generated action is added to the application. The last part of the algorithm
is for the enforcement of the security annotations: for each security annotation in the
pool, GENERATESC instantiates the Freemarker template for the corresponding secu-
rity control(s) and after that GERNERATESP generates the security specifications that
are added to the security specification document.

Algorithm 1 Algorithm for generation of River applications
GENERATERIVERAPPLICATIONS(SecBPMN2 model)

1 for each pool ∈ model
2 do riverApplication← GENERATE(pool)
3 for each lane ∈ pool
4 do riverRole← GENERATE(lane)
5 riverApplication.ADD(riverRole)
6 for each dataObject ∈ pool
7 do riverType, riverEntity, riverNamespace← GENERATE(dataObject)
8 riverApplication.ADD(riverType)
9 riverApplication.ADD(riverEntity)

10 riverApplication.ADD(riverNamespace)
11 for each task ∈ pool
12 do riverAction← GENERATE(task)
13 if LINKEDDO(task)
14 then riverEntity← RETRIEVE(DataObject)
15 riverEntity.ADD(riverAction)
16 else riverApplication.ADD(riverAction)
17 securitySpecificationDoc← NEW()
18 for each securityAnnotation ∈ pool
19 do securityMeachanisms← GENERATESC(securityAnnotation)
20 riverApplication.ADD(securityMechanisms)
21 securitySpecifications← GENERATESP(securityAnnotation)
22 securitySpecificationDoc← ADD(securitySpecification)

Due to lack of resources, our prototype is currently limited to public and private
process models and collaboration models. We do not foresee any fundamental problem
in extending the prototype to support SecBPMN2 choreography models.



5.2 Evaluation and Discussion

To evaluate our approach, we used the framework to generate River applications for
the PE system. Following the process proposed in Fig. 3, we modeled the business
processes and then we generated the River applications, using the software tool we
implemented. The choice of SecBPMN2 was appropriate since the modeling language
was expressive enough to specify the business processes and the security choices. The
generation required no effort, and its execution took only few seconds. We successfully
deploy the generated River applications on a River server sandbox. The usage of our
approach saved lot of effort and time in the first part of the implementation phase,
where River skeletons are defined. While the overall evaluation of the approach was
very positive, we also observed several limitations that need to be addressed before a
commercialization is possible. In particular, we identified the following restrictions:

Manual written code: we generate skeletons of River applications. Although, we try
to minimize the human intervention after the generation of the River applications, we
believe that, with the current technologies, is hardly possible to completely remove the
intervention of developers after the generation. The price to pay in order to automati-
cally generate complete River applications is to collect all the information required, for
example the actual implementation of the business logic, before the generation. This
would only move the effort required to developers before the generation and, neverthe-
less, it would lead to a less intuitive, and less flexible framework.

Choice of security controls: Security constraints can often be fulfilled by different
security controls. For example, a confidentiality requirement can be implemented by
role-based access control or by encryption based access-control. In our prototype, we
decided to limit the choice of security controls to, first, increase the usability, and, sec-
ond, to be able to ensure the compositionality of the security controls. For applying our
approach to further application domains, we would need to guide a security expert in
selecting the most suitable security control as part of the generation.

Limitations of implementing “security-by-design”: While our framework is designed
with “security-by-design” in mind, due to technical and fundamental limitations, it can-
not be fully achieved. First, there are security controls that require a run-time configu-
ration (e.g., access control) and, second, security controls that are part of the generated
implementation could be modified during the development process. With respect to the
first item, we are generating requirements documents that need to be fulfilled while con-
figuring the actual system. With respect to the second item, we would need to integrate
consistency checks that ensure that the generated source is not modified during develop-
ment. Moreover, the generated security controls require that manually developed parts
to not violate the security requirements. To ensure this, we envision to implement static
source code checks (see [18] for a first work in this area).

Cross-organizational security constraints: Currently, our approach has only very lim-
ited support for cross-organizational security requirements such as separation-of-duties
across multiple organizations. This is a challenge which is out of scope of our work,
as it requires collaborations between the organizations on the overall system level, e.g.,



by using a federated identify management systems. As soon as such federated security
systems are used, our framework will support cross-organizational requirements.

Not all of those restrictions are limiting the wide-spread use of our approach simi-
larly. For example, relying on a “honest developer” is not considered to be a roadblock
as the current framework already advanced the state of the art with respect to building
secure process-aware systems significantly.

5.3 Related Work

In the area of secure process-aware systems, a variety of BPMN-based approaches have
been proposed for modeling security, privacy, and compliance aspects (e.g., [9,19,20]).
The BPMN meta-model is extended with new attributes and properties, and different se-
lections of security, privacy, or compliance properties are considered. However, none of
these proposals provide support to map BPMN models into artifact centric implemen-
tations. The approaches to implement and enforce security properties mainly focus on
integrating security control mechanisms (e.g., access control infrastructures) into busi-
ness process execution engines [21]. Lohmann et al. [22,23] discuss also the integration
of compliance aspects into artifact centric business processes.

In the area of mapping or transforming control-flow centric business process specifi-
cations to artifact based models, the number of existing proposals is surprisingly small.
Estañol et al. [24] present a mapping of BPMN to UML models with OCL constraints.
The data model of the target language, i.e., UML/OCL class models, is conceptual very
close to the River language. The pure mapping of business process artifacts results very
similar to our approach. In contrast to our work, Estañol et al. [24] do not discuss secu-
rity at all. Moreover, their approach is not supported by an actual implementation.

6 Conclusions and Future Work

To our knowledge, this paper presents the first automated framework for translating
security-aware control-flow-centric business-process-models to a secure artifact-centric
implementation of process aware systems. While our prototype used SecBPMN2 and
SAP River, the underlying approach is generic and can be applied as well to other
security-aware business process languages as well as other artifact-centric frameworks
and languages. Adapting the approach to a different security-aware business process
languages, e.g., SecureBPMN [9], changes the set of supported security properties,
which might require the development of new mappings. Adapting the mapping to dif-
ferent artifact-centric frameworks, e.g., ABAP (used by the SAP Business Suite) or
PeopleCode (used by Oracle PeopleSoft) that already support access control is easy.

We plan to extend our approach along at three lines of research: (i) automated gen-
eration of validation checks to be executed after each update of security-related config-
urations; (ii) as preliminary discussed in [18], automated check for the implementation
validation; (iii) integration with monitoring and process mining frameworks.

Acknowledgment This research was partially supported by the ERC advanced grant
267856, ‘Lucretius: Foundations for Software Evolution’, www.lucretius.eu.

www.lucretius.eu


References

1. OMG: BPMN 2.0. OMG. (Jan 2011) www.omg.org/spec/BPMN/2.0.
2. OASIS: Web Services Business Process Execution Language. OASIS. (Apr 2007) docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
3. SAP SE: SAP River Developer Guide. (2014) Document Version 1.0, SAP HANA SPS 08.
4. Doolittle, J.: PeopleSoft Developer’s Guide for PeopleTools and PeopleCode. McGraw-Hill

Osborne Media (2008)
5. Paja, E., Dalpiaz, F., Giorgini, P.: Managing security requirements conflicts in socio-

technical systems. In Ng, W., Storey, V.C., Trujillo, J., eds.: ER’13. LNCS 8217, Springer
(2013) 270–283

6. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems – Chal-
lenges, Methods, Technologies. Springer (2012)

7. SAP SE: SAP Payment Engine Website. www.sap.com/services-support/svc/
custom-app-development/cnsltg/prebuilt/payment-engine/ Last vis-
ited Mar. 28th, 2015.

8. Salnitri, M., Dalpiaz, F., Giorgini, P.: Modeling and verifying security policies in business
processes. BPMDS ’14 (2014) 200–214

9. Brucker, A.D.: Integrating security aspects into business process models. it – Information
Technology 55(6) (2013) 239–246

10. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specification. IBM
Syst. J. 42(3) (July 2003) 428–445

11. Keller, H., Krüger, S.: ABAP Objects. SAP PRESS (2007)
12. SecBPMN Website. www.secbpmn.disi.unitn.it Last visited Mar. 28th, 2015.
13. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-

tions and processes. IEEE Data Eng. Bull. 32(3) (2009) 3–9
14. OMG: OMG Unified Modeling Language, Infrastructure, V2.1.2 (2007) www.omg.org/

spec/UML/2.1.2/Infrastructure/PDF.
15. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC - a workflow security model incorporating

controlled overriding of constraints. Int. J. Cooperative Inf. Syst. 12(4) (2003) 455–485
16. Simon, R., Zurko, M.: Separation of duty in role-based environments. In: CSFW ’97, IEEE

Computer Society (1997) 183–194
17. Ferraiolo, D., Kuhn, R.: Role-based access control. In: 15th NIST-NCSC National Computer

Security Conference. (1992) 554–563
18. Brucker, A.D., Hang, I.: Secure and compliant implementation of business process-driven

systems. In: SBP ’12. LNBIP 132, Springer (2012) 662–674
19. Mülle, J., von Stackelberg, S., Böhm, K.: A security language for BPMN process models.

Technical report, University Karlsruhe (KIT) (2011)
20. Rodríguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the modeling of

security requirements in business processes. IEICE - Trans. Inf. Syst. ’07 E90-D 745–752
21. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: Modeling and Enforc-

ing Access Control Requirements in Business Processes. In Atluri, V., Vaidya, J., Kern, A.,
Kantarcioglu, M., eds.: SACMAT ’12, ACM (2012) 123–126

22. Lohmann, N.: Compliance by design for artifact-centric business processes. Information
Systems 38(4) (2013) 606–618

23. Lohmann, N., Nyolt, M.: Artifact-centric modeling using BPMN. In Pallis, G., Jmaiel, M.,
Charfi, A., Graupner, S., Karabulut, Y., Guinea, S., Rosenberg, F., Sheng, Q.Z., Pautasso, C.,
Mokhtar, S.B., eds.: ICSOC ’12 Workshops. LNCS 7221. Springer (2011) 54–65

24. Estañol, M., Queralt, A., Sancho, M., Teniente, E.: Artifact-centric business process models
in UML. In Rosa, M.L., Soffer, P., eds.: BPM ’12. LNBIP 132, Springer (2012) 292–303

www.omg.org/spec/BPMN/2.0
docs.oasis-open.org/ wsbpel/ 2.0/ wsbpel-v2.0.html
docs.oasis-open.org/ wsbpel/ 2.0/ wsbpel-v2.0.html
www.sap.com/services-support/svc/custom-app-development/cnsltg/prebuilt/payment-engine/
www.sap.com/services-support/svc/custom-app-development/cnsltg/prebuilt/payment-engine/
www.secbpmn.disi.unitn.it
www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

	From Secure Business Process Models to Secure Artifact-Centric Specifications
	Bibliography

