
Preserving Compliance with Security
Requirements in Socio-Technical Systems

Mattia Salnitri, Elda Paja, and Paolo Giorgini

University of Trento, Trento, Italy,
{mattia.salnitri, elda.paja, paolo.giorgini}@unitn.it

Abstract. Socio-technical systems are an interplay of social (humans
and organizations) and technical components interacting with one an-
other to achieve their objectives. Security is a central issue in such com-
plex systems, and it cannot be tackled only through technical mecha-
nisms: the encryption of sensitive data while being transmitted, does not
assure that the receiver will not disclose them to unauthorized parties.
Therefore, dealing with security in socio-technical systems requires an
analysis: (i) from a social and organizational perspective, to elicit the
objectives and security requirements of each component; (ii) from a pro-
cedural perspective, to define how the actors behave and interact with
each other. But, socio-technical systems need to adapt to changes of the
external environment, making the need to deal with security a prob-
lem that has to be faced during all the systems’ life-cycle. We propose
an iterative and incremental process to elicit security requirements and
verify the socio-technical system’s compliance with such requirements
throughout the systems’ life cycle.

Keywords: Socio-Technical Systems, Security Requirements, Security
Policies, Compliance, Business Processes

1 Introduction

Socio-technical systems are complex systems where social (human and organi-
zational) and technical components interact with each other to achieve common
objectives. Examples of socio-technical systems are healthcare systems, smart
cities, air traffic management, etc. In a smart city citizens constantly exchange
information with e-govermental systems such as tax-payment. The amount of
information exchanged in such systems is considerable, and quite often part of
such information is sensitive, i.e., should be protected. Apart from information,
other types of assets are relevant when dealing with socio-technical systems. In
a smart city, examples of other assets are the services being offered, such as the
tax verification and monitoring service.

An analysis of security aspects is crucial to avoid severe consequences [7,
3, 13] such as loss of privacy and law infringement. Security is typically dealt
with technical security mechanisms. For instance, encryption mechanisms are
used to protect data confidentiality. However, such mechanisms cannot protect



information from misuse by authorized users. As a result, security analysis in
socio-technical systems calls for an analysis of social and organizational aspects
along technical ones.

An analysis of social and organizational aspects allows to capture the ob-
jectives of each stakeholder and their business policies, how stakeholders pursue
their objectives, to then check if some of these business policies might threaten
stakeholders’ assets (or those of their interacting parties) with respect to secu-
rity. For example, citizens might want the non-disclosure of their social security
number, but the employees of the tax-payment system may need to use this
information for statistical purposes. In this case, there is a conflict between
stakeholders’ need, which can be detected only through an analysis of social and
organizational aspects. Starting from stakeholders’ needs, and after dealing with
possible conflicts one can obtain a consistent security requirements specification.

But an analysis of social and organizational aspects to security requirements
engineering is not enough, verifying whether the socio-technical system is com-
pliant with such requirements is crucial too. To perform such verification, we
need to analyse the overall socio-technical system, the involved stakeholders,
their behavior and interactions with others to check whether the procedures and
activities underlying the system comply with the specified security requirements.
Indeed, the analysis of procedural aspects allows to verify if the security require-
ments are satisfied by the socio-technical system. For instance, in a smart city,
citizens require the non-disclosure of their social security numbers. An analysis
of the flow of activities and the information flow, via business processes [12],
allows verifying whether there is a flow of information containing the social se-
curity number, which does not start from the citizen, capturing in this way a
breach with respect to non-disclosure of such information.

The need socio-technical systems have to adapt, has a high impact over their
capability to remain compliant with security requirements. For example, the
business process executed to coordinate the tax-payment system with the provi-
sion of the smart city services, is drastically changed because new technologies
are employed to minimize the effort of the smart city employees. Before the de-
ployment of the adapted business process, all security policies shall be verified,
to avoid security breaches.

In this paper, we propose a process to guide security designers in capturing
security requirements in socio-technical systems and preserving compliance with
them. As far as our knowledge goes, no similar processes have been proposed
in the literature to guide security designers in maintaining business processes
running in a socio-technical system compliant with social and organizational se-
curity requirements. Specifically, we rely on the STS-ml [8, 18] (Socio-Technical
Security modeling language), an actor and goal-oriented modeling language,
for the modeling of social and organizational aspects of socio-technical systems,
and SecBPMN [25] (Secure BPMN), an extension of Business Process Model-
ing and Notation (BPMN) for modeling procedural aspects of socio-technical
systems. The process proposed in this paper guides security designers in the
specification of SecBPMN security policies from STS-ml security requirements,



and in maintaining compliance with security policies, while preserving in this
way compliance with security requirements.

The paper is structured as follows. Section 2 gives an overview of the proposed
process, while Section 3 provides a detailed description of the steps of the process,
with references to the chosen languages. Section 4 discusses related work, and
Section 5 summarizes the paper and concludes.

2 Incremental Design Process for Socio-Technical
Systems

We propose an iterative and incremental process to verify the continuous com-
pliance of evolving and adaptable socio-technical systems with security require-
ments for the said system. The process is iterative, because it cycles various
times, and incremental, because it allows security requirement engineers to re-
fine and extend the model during its iterations. It receives in input the security
specification of a socio-technical system and, during its iterations, it ensures
compliance with security requirements.

The process, illustrated in Fig. 1, is divided in two phases, the first phase
is executed by security requirement engineers and it regards the elicitation of
security requirements considering social and organizational aspects, while the
second phase is executed by security designers and it regards verifying compli-
ance via procedural aspects of socio-technical systems. The process can be used:
(i) before deployment, to guide the definition of the business processes (proce-
dural) executed by the socio-technical system; (ii) after the deployment, to help
preserving compliance of the socio-technical system during its life-cycle.

Fig. 1. Incremental Design Process



2.1 Phase 1

The first phase consists of only one activity, namely 1.1 Elicit security re-
quirements, and it is concerned with the extraction of security requirements for
the considered socio-technical system. The set of security requirements is rep-
resented with the data object “Security requirements”; the dashed arrow from
the activity to the data object means the activity creates or modifies this data
object. Section 3.1 describes the elicitation activity in more detail.

2.2 Phase 2

The activities in the second phase are executed to verify if security requirements
captured through Phase 1 are satisfied by the business processes of the socio-
technical system. For this, security requirements are transformed in security
policies, i.e., security constraints in terms of business process concepts.

The activity 2.1. Generate security policies consists in generating se-
curity policies from security requirements. In this step, a set of transformation
rules, presented in [27], is used to transform security requirements in security
policies in a semi-automated fashion. This activity receives in input (see the in-
coming dashed arrow, Fig. 1) a set of security requirements and it results in a
set of security policies (data object “Security policies”) in output.

The activity 2.2. Define/update processes consists in the definition of
new business processes, or the modification of existing ones. This activity receives
in input the security policies generated by the previous activity: the definition
or modification of processes will be guided by the security policies they should
comply with. The activity produces a set of business processes, represented with
the data object “Business processes”.

The activity 2.3. Verify security policies consists in the verification of
the security policies, generated by activity 2.2, against the business processes
generated by activity 2.3. This step is necessary, although some business pro-
cesses have been created using security policies as guidelines, given that verifying
compliance with security policies requires the complete set of business processes.

If at least one business process does not comply with security policies, either
the security specification or the procedural design shall be changed. This is
represented with an arrow from the gateway to the beginning of the process.
Otherwise, the process waits for a change in the socio-technical system: if the
business processes change, then the the verification step is executed, otherwise,
if the security requirements change, the process restart from the beginning.

The order of execution of the steps described in the process is not prescriptive,
rather should be considered as a guideline. In particular, the order of the second
and the third activity could be swapped: frequently processes are defined before
the definition of security policies. In this case, the definition of the processes will
not be guided by the security policies.



3 The Process in Action

We describe how the process is executed with the help of a motivating example.
We use the SWIM1 Air Traffic Management (ATM) socio-technical system 2 as a
motivating example for our process. It consists of a large number of autonomous
and heterogeneous components (stakeholders), such as pilots, airports personnel,
national airspace managers, meteo services, radars, etc., which interact with each
other to enable air traffic management operations. In such a complex system,
ensuring security is critical, for security leaks may result in severe consequences
on, for example, safety. For instance, a successful attack to the control tower,
the core component of every airport, can paralyse an airport for hours or days,
with severe consequences on managing flights and consequently on passengers.

3.1 Phase One: Eliciting Security Requirements

The elicitation of security requirements is concerned with the analysis of social
and organizational aspects in the said socio-technical system to derive a consis-
tent security requirements specification. To execute this activity we have adopted
STS-ml [8, 18] (Socio-Technical Security- modeling language), an actor and goal-
oriented security requirements modelling language for socio-technical systems.
STS-ml was chosen because: (1) it is specifically thought for socio-technical
systems, relating security to interaction, (2) it supports a rich set of security
requirements, while providing a clearer ontological foundation than existing ap-
proaches [11, 16]. Moreover, STS-ml is fully supported by the STS-Tool [19] on
modelling, analysing, and deriving a consistent set of security requirements.

In STS-ml, requirements models are created through three views: (i) the so-
cial view—represents the main stakeholders (in terms of actors) together with
their objectives (via goals) and the interactions they enter in the socio-technical
system; (ii) the information view—represents stakeholders’ informational as-
sets and their representation via documents; and (iii) the authorization view—
represents the authorizations that actors grant to others over their information.
Fig. 2 shows a partial STS-ml model of the motivating example.

Social view. Actors in STS-ml are modeled in terms of (i) agents—concrete en-
tities that are already known at design-time (e.g., Immigration office ), and (ii)
roles—abstract entities representing a class of participants (e.g., Web-Service).
Roles can be adopted (played) by different agents at runtime. An actor’s ra-
tionale captures actors’ goals, and how they are achieved via AND/OR goal
decompositions (e.g., the root goal of the Immigration Office is Immigration
monitored). Moreover, to achieve their goals, actors might need to read or mod-
ify documents, as well as create (produce) new documents (e.g., Immigration
Office reads document Visa to achieve goal Visa checked). Most importantly,
the social view captures actors’ social interactions via two social relationships:

1 The System Wide Information Management (SWIM) [2]
2 This scenario is a variant of Case Study B of the FP7 EU Funded Project Aniketos

http://www.aniketos.eu



Fig. 2. STS-ml model of an ATM scenario

goal delegation and document transmission. STS-ml allows actors to express their
concerns about security (security needs) over the interactions they enter to then
derive security requirements with respect to confidentiality, integrity, availability,
accountability, reliability, and authenticity.

Information view. STS-ml considers information a first class citizen, consid-
ering most security issues are concerned with the protection of information.
Information owners are the ones concerned with the protection of information.
Therefore, information ownership is a crucial aspect to model. In STS-ml, the
relationship own relates an actor to the information that it owns.

But, information may be available in various forms. Thus, STS-ml distin-
guishes between information and its representation in form of documents. Docu-
ments become relevant from a security point of view because of the information
they might represent. Thus, the purpose of the information view, apart from rep-
resenting information entities and their respective owners, is to link together the
documents actors use and exchange in the social view with their informational
content. This link is drawn through “Tangible by” relationships, which indicate
that an information entity is represented by a document. In Fig. 2, information
Citizen SSN (Social Security Number) is made tangible by document Visa.

Authorization view. STS-ml allows capturing the permission and prohibition
flow over information, on top of capturing information flow. An adequate rep-
resentation of permissions and prohibitions is crucial to establishing whether
information is used and exchanged in compliance with security requirements.

The authorisation view represents the permissions and/or prohibitions on
information that actors grant one to another. An authorization relationship de-
tails: (i) the permissions/prohibitions on the operations actors can perform over
information (Read, Modify, Produce, Transmit) while manipulating documents
for the achievement of their goals; (ii) information entities for which permis-



sions/prohibitions are specified; (iii) the scope of authorisation, referring to the
goal(s) for the fulfillment of which permission/prohibition is specified; and fi-
nally, (iv) transferrability, specifying whether permissions can be further granted
to others (not applicable to prohibitions). In Fig. 2, the Web-Service authorizes
the Immigration Office to use Citizen SSN in the scope of goal Visa checked.

3.2 Phase Two: Generating Secure Procedures

In order to verify compliance with security requirements, we generate security
policies, define the process that will be executed in the socio-technical system,
and verify compliance of security policies against the business processes. We
have chosen the SecBPMN (Secure BPMN) [25] framework, for it offers support
throughout these activities. Indeed, SecBPMN is aimed at modeling business
processes with security aspects, modeling security policies, and verifying if one
or more business processes are compliant with these security policies. The lan-
guage is composed of: SecBPMN-ml (SecBPMN- modeling language), a modeling
language for business processes; SecBPMN-Q (SecBPMN - Query), a graphical
query language for specifying security policies in terms of SecBPMN-ml elements;
and a software component, which verifies compliance of business processes with
security policies. Each SecBPMN component is used in an activity of the second
phase of the process in Fig. 1. The rest of the section describes how SecBPMN
is used in each activity of Phase 2 3.

Activity 2.2. Define/update processes. In this activity business processes
of a socio-technical system are defined using SecBPMN-ml [25], which extends
BPMN with security concepts about information assurance and security defined
in [6]. There are many proposals that extend BPMN with security concepts, e.g.,
[20, 28], but they are focused on a restricted set of security concepts. SecBPMN-
ml, on the other hand, covers, as far as our knowledge goes, the most compre-
hensive set of security concepts.

The expressiveness of SecBPMN-ml permits security designers to define which
are the security mechanisms that should be used in the implementation and ex-
ecution of each activity. For example, it is possible to specify that the commu-
nication of a data object between two activities will be encrypted.

Fig. 3 shows part of a SecBPMN-ml model of a business process used in the
ATM socio-technical system, where users can use different web-interfaces to se-
lect the best option for a flight, buy tickets, and perform most of the bureaucratic
processes required to take the flight.

Activity 2.1. Generate security policies. This activity consists in gener-
ating security policies from STS-ml security requirements, in a semi-automated
fashion [27], using SecBPMN-Q. For example, the security requirement of in-
tegrity attached to the “Visa” document in Fig. 2, can be transformed in the
SecBPMN-Q security policy shown in Fig. 4.

3 Note that we do not follow the flow of the process, but rather present the activities
following a more natural description for SecBPMN, swapping activities 2.1. and 2.2.



Fig. 3. Example of a business process modeled using SecBPMN-ml

Fig. 4. Example of a security policy modeled using SecBPMN-Q

The graphical security policy in Fig. 4 is composed of two activities labeled
with “@X” and “@Y”, while the “@” symbol is used to match any activities.
The two activities are linked with a path relation (the arrow with two slashes
in the middle), which matches all the business processes where the first activity,
marked with “@X” is executed before the second activity, marked with “@Y”.
The security policy is enriched with a message flow (represented as a dashed
arrow), which exchanges a data object called “Visa”. When executed, this se-
curity policy will match any message flow between two activities that exchange
the “Visa” data object. The confidentiality annotation requires the communica-
tion channel to assure the data object will be received only by authorized users.
Similarly, the integrity security annotation attached to the “Visa” data object,
imposes the data object to be protected by unauthorized modifications.

SecBPMN-Q is essential for the transformation of security requirements in
security policies. In previous work [26], we have demonstrated that it is possible
to transform the most used security requirements in SecBPMN-Q security poli-
cies. This activity uses the transformation rules we provided in [26] to support
the generation of security policies.



Fig. 5. Example of a path (highlighted in green) that satisfies the security policy
showed in Fig. 4

Activity 2.3. Verify security policies. This activity consists in verifying
if one or more business processes, modeled with SecBPMN-ml, comply with
SecBPMN-Q security policies. This activity is straightforward for toy examples,
as for the business process in Fig. 3 and the security policy in Fig. 4. However, in
real-world scenarios, as the overall ATM case study [1], where business processes
can contain hundreds of elements, it is infeasible to verify security policies man-
ually. The software4 provided with SecBPMN framework supports automated
analysis to verify if a SecBPMN-Q security policy is satisfied by one or more
SecBPMN-ml business processes.

Automated analysis allows to highlight the path that complies with the secu-
rity policy, see Fig. 5 for the security policy in Fig. 4, where (i) the first activity
of the path “Web interface service - inputData” is linked with a message flow to
the last activity of the path“Visa check service”; (ii) the message flow is used to
exchange the data object “Visa” and it assures confidentiality of the transferred
data object; (iii) integrity and authenticity of the “Visa” data object are pre-
served. Assuming that the properties of the security annotations of the security
policy are less restrictive than the properties of the business process, the path,
and consequently the business process, complies with the security policy.

4 Related Work

In the years past, several approaches have been proposed to address the veri-
fication of requirements in business processes [5, 20, 28, 23, 15]. However, as far
as our knowledge goes, there are no approaches that cover the overall security
requirements engineering and verification process proposed in this paper.

4 http://www.secbpmn.disi.unitn.it



In the following, we describe the most known approaches, while highlighting
the differences with our approach considering the various phases.

Modeling BPMN with security concepts. As far as approaches dealing with
security aspects are concerned, many graphical modeling languages extending
BPMN [17] have been proposed. Ad-hoc notations are used in SecureBPMN [5]
proposed by Brucker et al to capture security and compliance requirements.
Other extensions of BPMN also rely on security annotated business process
modelling [20, 28, 23, 15] similarly to our approach. However, differently from
existing approaches, ours allows the definition of custom security policies. In-
stead, existing approaches employ software engines which use models created
with the respective languages to check a fixed set of hard coded security poli-
cies. Examples of such engines include [28, 24, 22].

Modeling security policies. Graphical query languages have been proposed
to check if a process satisfies a query, which can be interpreted as a policy. For
instance, BP-QL (Business Process - Query Language) [4] and BPQL (Business
Process Query Language) [9] allow to graphically define queries and check which
business processes satisfy the queries. These two query languages are not based
on BPMN, which makes their applicability and, most importantly, their learning
process slower than that of, for example, SecBPMN-Q that is based on the well-
known standard.

Other approaches are built on formal mathematical concepts (e.g. first order
logic, temporal logic, etc.), and can be used to define business processes and/or
the queries. These languages are expressive enough to include in the model se-
curity concepts. For instance, the approach of Rushby [21] proposes a language
and a framework that checks if the code of the software diverges from specified
behaviors (i.e., policies). These approaches have a main drawback: low usabil-
ity, since they are quite complex and require lot of effort for the formalization
of both business processes and security policies. In the eye of real scenarios,
whose dimensions get larger and larger, it is nearly impossible to model business
processes with such languages.

Verification of security policies. Liu et al. [14] describe how to check the
compliance between a set of formally expressed regulatory requirements and
business processes. The approach is accompanied by a software that allows ver-
ifying the business process against these compliance rules through the use of
model-checking technologies. Their approach uses Business process Execution
language (BPEL) instead of BPMN, and it is not focused on security, but rather
focus on regulatory compliance.

Ghose and Koliadis [10] enrich BPMN with annotations, and they calculate
how much a business process deviates from another business process. Differently
from our approach, theirs focuses only on the structural difference between pro-
cesses, again with no consideration of security requirements.



5 Conclusions

Security is quite a relevant aspect in the design of socio-technical systems, where
a security leak in a single component may threaten the whole system, and se-
curity violations might have severe consequences. We have proposed a process
intended to help security requirement engineers and security designers in veri-
fying and maintaining the satisfaction of social and organizational security re-
quirements through the procedural design of secure socio-technical systems. The
proposed process is based on the STS-ml [8, 18] for the elicitation of a consistent
security requirements specification, and on SecBPMN [25] for the verification of
the satisfaction of security requirements in a procedural way.

The need to follow the proposed process becomes particularly important
in adaptive socio-technical systems, where the design of the business processes
changes to adapt to external changes. We have shown how to capture security
requirements through STS-ml models, map them to security policies, and verify
their satisfaction by business processes of the socio-technical system using an
example from the air traffic management domain. The proposed process builds
on the assumption that the tasks (defined in the business process), and the
security aspects will be enforced rightly.

Our ongoing and future work includes: (i) developing a software that inte-
grates STS-Tool with the SecBPMN component in order to offer an integrated
framework for the management of security requirements in socio-technical sys-
tems; (ii) conducting empirical evaluation with security experts, to validate the
overall process, as well as the integration of STS-ml with SecBPMN.

Acknowledgment

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant no. 257930
(Aniketos).

References

1. Final report on aniketos on industrial case studies. Technical report, 2014.
http://aniketos.eu/sites/default/files/downloads/Aniketos%20D6.4%20-%20Final
%20report%20on%20Aniketos%20%20applied%20to%20industrial%20case
%20studies.pdf.

2. Federal Aviation Administration. SWIM ATM case study, last visited March
2014. http://www.faa.gov/about/office org/headquarters offices/ato/service
units/techops/atc comms services/swim/.

3. R. Anderson. Security engineering: A guide to building dependable distributed sys-
tems. Wiley, April 2008.

4. C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying business processes with
BP-QL. Information Systems, 33(6):477–507, September 2008.

5. A. D. Brucker, I. Hang, G. Lückemeyer, and R. Ruparel. SecureBPMN: Modeling
and Enforcing Access Control Requirements in Business Processes. In Proc. of
SACMAT’12, pages 123–126.



6. Y. Cherdantseva and J. Hilton. A reference model of information assurance and
security. In Proc. of ARES ’13, pages 546–555.

7. R. Crook, D. Ince, L. Lin, and B. Nuseibeh. Security requirements engineering:
When anti-requirements hit the fan. In Proc. of RE’02, pages 203–205. IEEE.

8. F. Dalpiaz, E. Paja, and P. Giorgini. Security Requirements Engineering via Com-
mitments. In Proc. of STAST’11, pages 1–8.

9. D. Deutch and T. Milo. Querying structural and behavioral properties of business
processes. In Database Programming Languages, LNCS, pages 169–185. 2007.

10. A. Ghose and G. Koliadis. Auditing business process compliance. In Proc. ISOC’07,
pages 169–180.

11. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling Security Re-
quirements through Ownership, Permission and Delegation. In Proc. of RE’05,
pages 167–176.

12. H.J. Johansson, P. McHugh, A.J. Pendlebury, and W.A. Wheeler. Business Process
Reengineering: Breakpoint Strategies for Market Dominance. Wiley & Sons, 1993.

13. M. N. Johnstone. Security requirements engineering-the reluctant oxymoron. In
Proc. of Australian Information Security Management Conference, page 5, 2009.

14. Y. Liu, S. Müller, and K. Xu. A static compliance-checking framework for business
process models. IBM Syst. J., 46(2):335–361, April 2007.

15. M. Menzel, I. Thomas, and C. Meinel. Security Requirements Specification in
Service-Oriented Business Process Management. In Proc. ARES ’09, pages 41–48.

16. H. Mouratidis and P. Giorgini. Secure Tropos: A Security-Oriented Extension of
the Tropos methodology. IJSEKE’07, pages 285–309.

17. OMG. BPMN 2.0. http://www.omg.org/spec/BPMN/2.0, Jan 2011.
18. E. Paja, F. Dalpiaz, and P. Giorgini. Managing security requirements conflicts in

socio-technical systems. In Proc. of ER’13, pages 270–283.
19. E. Paja, F. Dalpiaz, M. Poggianella, P. Roberti, and P. Giorgini. Specifying

and reasoning over socio-technical security requirements with sts-tool. In Proc.
of ER’13, pages 504–507.

20. A. Rodŕıguez, E. Fernández-Medina, and M. Piattini. A BPMN extension for
the modeling of security requirements in business processes. IEICE Trans. on
Information and Systems, 90(4):745–752, 2007.

21. J. Rushby. Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety, 75:167–177, 2002.

22. S. Sadiq, G. Governatori, and K. Namiri. Modeling control objectives for business
process compliance. In Proc. of BPM ’07, pages 149–164.

23. M. Saleem, J. Jaafar, and M. Hassan. A domain- specific language for modelling
security objectives in a business process models of soa applications. AISS, 4(1):353–
362, 2012.

24. M. Salnitri, F. Dalpiaz, and P. Giorgini. Aligning service-oriented architectures
with security requirements. In Proc. of OTM’12, pages 232–249.

25. M. Salnitri, F. Dalpiaz, and P. Giorgini. Modeling and verifying security policies
in business processes. In Proc. of BPMDS’14, pages 200–214.

26. M. Salnitri and P. Giorgini. Modeling and Verification of ATM Security Policies
with SecBPMN. In proc. of SHPCS’14.

27. M. Salnitri and P. Giorgini. Transforming socio-technical security requirements in
secbpmn security policies. In Proc. of IStar’14.

28. C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and C. Meinel. Model-driven
business process security requirement specification. JSA ’09, 55(4):211 – 223.


